| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj1 | Structured version Visualization version GIF version | ||
| Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 38863, eqvreldisj3 38864). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| eqvreldisj1 | ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → EqvRel 𝑅) | |
| 2 | simprl 770 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅)) | |
| 3 | simprr 772 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅)) | |
| 4 | 1, 2, 3 | qsdisjALTV 38652 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 5 | 4 | ralrimivva 3175 | 1 ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 ∅c0 4278 / cqs 8616 EqvRel weqvrel 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 df-qs 8623 df-refrel 38549 df-symrel 38581 df-trrel 38611 df-eqvrel 38622 |
| This theorem is referenced by: eqvreldisj2 38863 |
| Copyright terms: Public domain | W3C validator |