Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj1 Structured version   Visualization version   GIF version

Theorem eqvreldisj1 38862
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 38863, eqvreldisj3 38864). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 3-Dec-2024.)
Assertion
Ref Expression
eqvreldisj1 ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑅,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eqvreldisj1
StepHypRef Expression
1 simpl 482 . . 3 (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → EqvRel 𝑅)
2 simprl 770 . . 3 (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅))
3 simprr 772 . . 3 (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅))
41, 2, 3qsdisjALTV 38652 . 2 (( EqvRel 𝑅 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 3175 1 ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cin 3896  c0 4278   / cqs 8616   EqvRel weqvrel 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-qs 8623  df-refrel 38549  df-symrel 38581  df-trrel 38611  df-eqvrel 38622
This theorem is referenced by:  eqvreldisj2  38863
  Copyright terms: Public domain W3C validator