Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj2 Structured version   Visualization version   GIF version

Theorem eqvreldisj2 38943
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 38944). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
eqvreldisj2 ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅))

Proof of Theorem eqvreldisj2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqvreldisj1 38942 . 2 ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2 dfeldisj5 38839 . 2 ( ElDisj (𝐴 / 𝑅) ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
31, 2sylibr 234 1 ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wral 3048  cin 3897  c0 4282   / cqs 8627   EqvRel weqvrel 38259   ElDisj weldisj 38278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634  df-coss 38533  df-refrel 38624  df-cnvrefrel 38639  df-symrel 38656  df-trrel 38690  df-eqvrel 38701  df-disjALTV 38823  df-eldisj 38825
This theorem is referenced by:  eqvreldisj3  38944  eqvrelqseqdisj2  38947
  Copyright terms: Public domain W3C validator