| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj2 | Structured version Visualization version GIF version | ||
| Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 38811). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreldisj2 | ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj1 38809 | . 2 ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 2 | dfeldisj5 38706 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∀wral 3046 ∩ cin 3921 ∅c0 4304 / cqs 8681 EqvRel weqvrel 38183 ElDisj weldisj 38202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-eprel 5546 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 df-qs 8688 df-coss 38396 df-refrel 38497 df-cnvrefrel 38512 df-symrel 38529 df-trrel 38559 df-eqvrel 38570 df-disjALTV 38690 df-eldisj 38692 |
| This theorem is referenced by: eqvreldisj3 38811 eqvrelqseqdisj2 38814 |
| Copyright terms: Public domain | W3C validator |