| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj2 | Structured version Visualization version GIF version | ||
| Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 38863). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreldisj2 | ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj1 38861 | . 2 ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 2 | dfeldisj5 38758 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∀wral 3047 ∩ cin 3901 ∅c0 4283 / cqs 8621 EqvRel weqvrel 38231 ElDisj weldisj 38250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 df-coss 38447 df-refrel 38548 df-cnvrefrel 38563 df-symrel 38580 df-trrel 38610 df-eqvrel 38621 df-disjALTV 38742 df-eldisj 38744 |
| This theorem is referenced by: eqvreldisj3 38863 eqvrelqseqdisj2 38866 |
| Copyright terms: Public domain | W3C validator |