Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 8719 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 8448 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1550 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊤wtru 1544 Vcvv 3423 class class class wbr 5070 Er wer 8430 ≈ cen 8665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-er 8433 df-en 8669 |
This theorem is referenced by: entri 8726 snmapen1 8760 en2snOLDOLD 8764 xpsnen2g 8782 omxpen 8791 enen1 8830 enen2 8831 map2xp 8860 pwen 8863 ssenen 8864 phplem4 8872 php3 8876 snnen2o 8880 ssfiALT 8896 fineqvlem 8940 en1eqsn 8952 dif1enALT 8955 unfiOLD 8986 unxpwdom2 9252 infdifsn 9320 infdiffi 9321 karden 9559 xpnum 9615 cardidm 9623 ficardom 9625 carden2a 9630 carden2b 9631 isinffi 9656 pm54.43 9665 pr2ne 9667 en2eqpr 9669 en2eleq 9670 infxpenlem 9675 infxpidm2 9679 mappwen 9774 finnisoeu 9775 djuen 9831 djuenun 9832 dju1dif 9834 djuassen 9840 mapdjuen 9842 pwdjuen 9843 infdju1 9851 pwdju1 9852 pwdjuidm 9853 cardadju 9856 nnadju 9859 ficardadju 9861 ficardun 9862 ficardunOLD 9863 pwsdompw 9866 infxp 9877 infmap2 9880 ackbij1lem5 9886 ackbij1lem9 9890 ackbij1b 9901 fin4en1 9971 isfin4p1 9977 fin23lem23 9988 domtriomlem 10104 axcclem 10119 carden 10213 alephadd 10239 gchdjuidm 10330 gchxpidm 10331 gchpwdom 10332 gchhar 10341 tskuni 10445 fzen2 13592 hashdvds 16379 unbenlem 16512 unben 16513 4sqlem11 16559 pmtrfconj 18964 psgnunilem1 18991 odinf 19060 dfod2 19061 sylow2blem1 19115 sylow2 19121 simpgnsgd 19593 frlmisfrlm 20940 hmphindis 22831 dyadmbl 24644 fnpreimac 30885 padct 30931 f1ocnt 31000 volmeas 32074 sconnpi1 33076 lzenom 40480 fiphp3d 40529 frlmpwfi 40811 isnumbasgrplem3 40818 fiuneneq 40910 rp-isfinite5 40994 enrelmap 41467 enrelmapr 41468 enmappw 41469 uspgrymrelen 45176 |
Copyright terms: Public domain | W3C validator |