| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 9042 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8761 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1546 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1540 Vcvv 3479 class class class wbr 5142 Er wer 8743 ≈ cen 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-er 8746 df-en 8987 |
| This theorem is referenced by: entri 9049 snmapen1 9080 xpsnen2g 9106 omxpen 9115 enen1 9158 enen2 9159 map2xp 9188 pwen 9191 ssenen 9192 ssfiALT 9215 phplem4OLD 9258 php3OLD 9262 snnen2oOLD 9265 fineqvlem 9299 en1eqsnOLD 9310 dif1ennnALT 9312 unxpwdom2 9629 infdifsn 9698 infdiffi 9699 karden 9936 xpnum 9992 cardidm 10000 ficardom 10002 carden2a 10007 carden2b 10008 isinffi 10033 pm54.43 10042 pr2neOLD 10046 en2eqpr 10048 en2eleq 10049 infxpenlem 10054 infxpidm2 10058 mappwen 10153 finnisoeu 10154 djuen 10211 djuenun 10212 dju1dif 10214 djuassen 10220 mapdjuen 10222 pwdjuen 10223 infdju1 10231 pwdju1 10232 pwdjuidm 10233 cardadju 10236 nnadju 10239 ficardadju 10241 ficardun 10242 pwsdompw 10244 infxp 10255 infmap2 10258 ackbij1lem5 10264 ackbij1lem9 10268 ackbij1b 10279 fin4en1 10350 isfin4p1 10356 fin23lem23 10367 domtriomlem 10483 axcclem 10498 carden 10592 alephadd 10618 gchdjuidm 10709 gchxpidm 10710 gchpwdom 10711 gchhar 10720 tskuni 10824 fzen2 14011 hashdvds 16813 unbenlem 16947 unben 16948 4sqlem11 16994 pmtrfconj 19485 psgnunilem1 19512 odinf 19582 dfod2 19583 sylow2blem1 19639 sylow2 19645 simpgnsgd 20121 frlmisfrlm 21869 hmphindis 23806 dyadmbl 25636 fnpreimac 32682 padct 32732 f1ocnt 32805 volmeas 34233 sconnpi1 35245 lzenom 42786 fiphp3d 42835 frlmpwfi 43115 isnumbasgrplem3 43122 fiuneneq 43209 rp-isfinite5 43535 enrelmap 44015 enrelmapr 44016 enmappw 44017 uspgrymrelen 48074 termcterm2 49174 |
| Copyright terms: Public domain | W3C validator |