| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 8949 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8663 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 Vcvv 3444 class class class wbr 5102 Er wer 8645 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 |
| This theorem is referenced by: entri 8956 snmapen1 8987 xpsnen2g 9011 omxpen 9020 enen1 9058 enen2 9059 map2xp 9088 pwen 9091 ssenen 9092 ssfiALT 9115 fineqvlem 9185 en1eqsnOLD 9196 dif1ennnALT 9198 unxpwdom2 9517 infdifsn 9586 infdiffi 9587 karden 9824 xpnum 9880 cardidm 9888 ficardom 9890 carden2a 9895 carden2b 9896 isinffi 9921 pm54.43 9930 pr2neOLD 9934 en2eqpr 9936 en2eleq 9937 infxpenlem 9942 infxpidm2 9946 mappwen 10041 finnisoeu 10042 djuen 10099 djuenun 10100 dju1dif 10102 djuassen 10108 mapdjuen 10110 pwdjuen 10111 infdju1 10119 pwdju1 10120 pwdjuidm 10121 cardadju 10124 nnadju 10127 ficardadju 10129 ficardun 10130 pwsdompw 10132 infxp 10143 infmap2 10146 ackbij1lem5 10152 ackbij1lem9 10156 ackbij1b 10167 fin4en1 10238 isfin4p1 10244 fin23lem23 10255 domtriomlem 10371 axcclem 10386 carden 10480 alephadd 10506 gchdjuidm 10597 gchxpidm 10598 gchpwdom 10599 gchhar 10608 tskuni 10712 fzen2 13910 hashdvds 16721 unbenlem 16855 unben 16856 4sqlem11 16902 pmtrfconj 19372 psgnunilem1 19399 odinf 19469 dfod2 19470 sylow2blem1 19526 sylow2 19532 simpgnsgd 20008 frlmisfrlm 21733 hmphindis 23660 dyadmbl 25477 fnpreimac 32568 padct 32616 f1ocnt 32698 volmeas 34194 sconnpi1 35199 lzenom 42731 fiphp3d 42780 frlmpwfi 43060 isnumbasgrplem3 43067 fiuneneq 43154 rp-isfinite5 43479 enrelmap 43959 enrelmapr 43960 enmappw 43961 uspgrymrelen 48114 termcterm2 49476 |
| Copyright terms: Public domain | W3C validator |