| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 8932 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8645 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1548 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1542 Vcvv 3437 class class class wbr 5095 Er wer 8627 ≈ cen 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-er 8630 df-en 8878 |
| This theorem is referenced by: entri 8939 snmapen1 8970 xpsnen2g 8992 omxpen 9001 enen1 9039 enen2 9040 map2xp 9069 pwen 9072 ssenen 9073 ssfiALT 9092 fineqvlem 9159 dif1ennnALT 9170 unxpwdom2 9483 infdifsn 9556 infdiffi 9557 karden 9797 xpnum 9853 cardidm 9861 ficardom 9863 carden2a 9868 carden2b 9869 isinffi 9894 pm54.43 9903 en2eqpr 9907 en2eleq 9908 infxpenlem 9913 infxpidm2 9917 mappwen 10012 finnisoeu 10013 djuen 10070 djuenun 10071 dju1dif 10073 djuassen 10079 mapdjuen 10081 pwdjuen 10082 infdju1 10090 pwdju1 10091 pwdjuidm 10092 cardadju 10095 nnadju 10098 ficardadju 10100 ficardun 10101 pwsdompw 10103 infxp 10114 infmap2 10117 ackbij1lem5 10123 ackbij1lem9 10127 ackbij1b 10138 fin4en1 10209 isfin4p1 10215 fin23lem23 10226 domtriomlem 10342 axcclem 10357 carden 10451 alephadd 10477 gchdjuidm 10568 gchxpidm 10569 gchpwdom 10570 gchhar 10579 tskuni 10683 fzen2 13880 hashdvds 16690 unbenlem 16824 unben 16825 4sqlem11 16871 pmtrfconj 19382 psgnunilem1 19409 odinf 19479 dfod2 19480 sylow2blem1 19536 sylow2 19542 simpgnsgd 20018 frlmisfrlm 21789 hmphindis 23715 dyadmbl 25531 fnpreimac 32657 padct 32707 f1ocnt 32789 volmeas 34267 sconnpi1 35306 lzenom 42890 fiphp3d 42939 frlmpwfi 43218 isnumbasgrplem3 43225 fiuneneq 43312 rp-isfinite5 43637 enrelmap 44117 enrelmapr 44118 enmappw 44119 uspgrymrelen 48280 termcterm2 49642 |
| Copyright terms: Public domain | W3C validator |