![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 9040 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 8759 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1544 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1538 Vcvv 3478 class class class wbr 5148 Er wer 8741 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 |
This theorem is referenced by: entri 9047 snmapen1 9078 xpsnen2g 9104 omxpen 9113 enen1 9156 enen2 9157 map2xp 9186 pwen 9189 ssenen 9190 ssfiALT 9213 phplem4OLD 9255 php3OLD 9259 snnen2oOLD 9262 fineqvlem 9296 en1eqsnOLD 9307 dif1ennnALT 9309 unxpwdom2 9626 infdifsn 9695 infdiffi 9696 karden 9933 xpnum 9989 cardidm 9997 ficardom 9999 carden2a 10004 carden2b 10005 isinffi 10030 pm54.43 10039 pr2neOLD 10043 en2eqpr 10045 en2eleq 10046 infxpenlem 10051 infxpidm2 10055 mappwen 10150 finnisoeu 10151 djuen 10208 djuenun 10209 dju1dif 10211 djuassen 10217 mapdjuen 10219 pwdjuen 10220 infdju1 10228 pwdju1 10229 pwdjuidm 10230 cardadju 10233 nnadju 10236 ficardadju 10238 ficardun 10239 pwsdompw 10241 infxp 10252 infmap2 10255 ackbij1lem5 10261 ackbij1lem9 10265 ackbij1b 10276 fin4en1 10347 isfin4p1 10353 fin23lem23 10364 domtriomlem 10480 axcclem 10495 carden 10589 alephadd 10615 gchdjuidm 10706 gchxpidm 10707 gchpwdom 10708 gchhar 10717 tskuni 10821 fzen2 14007 hashdvds 16809 unbenlem 16942 unben 16943 4sqlem11 16989 pmtrfconj 19499 psgnunilem1 19526 odinf 19596 dfod2 19597 sylow2blem1 19653 sylow2 19659 simpgnsgd 20135 frlmisfrlm 21886 hmphindis 23821 dyadmbl 25649 fnpreimac 32688 padct 32737 f1ocnt 32810 volmeas 34212 sconnpi1 35224 lzenom 42758 fiphp3d 42807 frlmpwfi 43087 isnumbasgrplem3 43094 fiuneneq 43181 rp-isfinite5 43507 enrelmap 43987 enrelmapr 43988 enmappw 43989 uspgrymrelen 47997 |
Copyright terms: Public domain | W3C validator |