Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 8787 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 8513 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1546 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊤wtru 1540 Vcvv 3432 class class class wbr 5074 Er wer 8495 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 |
This theorem is referenced by: entri 8794 snmapen1 8829 en2snOLDOLD 8833 xpsnen2g 8852 omxpen 8861 enen1 8904 enen2 8905 map2xp 8934 pwen 8937 ssenen 8938 ssfiALT 8957 phplem4OLD 9003 php3OLD 9007 snnen2oOLD 9010 fineqvlem 9037 en1eqsn 9048 dif1enALT 9050 unfiOLD 9081 unxpwdom2 9347 infdifsn 9415 infdiffi 9416 karden 9653 xpnum 9709 cardidm 9717 ficardom 9719 carden2a 9724 carden2b 9725 isinffi 9750 pm54.43 9759 pr2ne 9761 en2eqpr 9763 en2eleq 9764 infxpenlem 9769 infxpidm2 9773 mappwen 9868 finnisoeu 9869 djuen 9925 djuenun 9926 dju1dif 9928 djuassen 9934 mapdjuen 9936 pwdjuen 9937 infdju1 9945 pwdju1 9946 pwdjuidm 9947 cardadju 9950 nnadju 9953 ficardadju 9955 ficardun 9956 ficardunOLD 9957 pwsdompw 9960 infxp 9971 infmap2 9974 ackbij1lem5 9980 ackbij1lem9 9984 ackbij1b 9995 fin4en1 10065 isfin4p1 10071 fin23lem23 10082 domtriomlem 10198 axcclem 10213 carden 10307 alephadd 10333 gchdjuidm 10424 gchxpidm 10425 gchpwdom 10426 gchhar 10435 tskuni 10539 fzen2 13689 hashdvds 16476 unbenlem 16609 unben 16610 4sqlem11 16656 pmtrfconj 19074 psgnunilem1 19101 odinf 19170 dfod2 19171 sylow2blem1 19225 sylow2 19231 simpgnsgd 19703 frlmisfrlm 21055 hmphindis 22948 dyadmbl 24764 fnpreimac 31008 padct 31054 f1ocnt 31123 volmeas 32199 sconnpi1 33201 lzenom 40592 fiphp3d 40641 frlmpwfi 40923 isnumbasgrplem3 40930 fiuneneq 41022 rp-isfinite5 41124 enrelmap 41605 enrelmapr 41606 enmappw 41607 uspgrymrelen 45315 |
Copyright terms: Public domain | W3C validator |