Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 8770 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 8496 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1549 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊤wtru 1543 Vcvv 3431 class class class wbr 5079 Er wer 8478 ≈ cen 8713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-er 8481 df-en 8717 |
This theorem is referenced by: entri 8777 snmapen1 8812 en2snOLDOLD 8816 xpsnen2g 8834 omxpen 8843 enen1 8886 enen2 8887 map2xp 8916 pwen 8919 ssenen 8920 ssfiALT 8939 snnen2o 8980 phplem4OLD 8985 php3OLD 8989 fineqvlem 9015 en1eqsn 9026 dif1enALT 9028 unfiOLD 9059 unxpwdom2 9325 infdifsn 9393 infdiffi 9394 karden 9654 xpnum 9710 cardidm 9718 ficardom 9720 carden2a 9725 carden2b 9726 isinffi 9751 pm54.43 9760 pr2ne 9762 en2eqpr 9764 en2eleq 9765 infxpenlem 9770 infxpidm2 9774 mappwen 9869 finnisoeu 9870 djuen 9926 djuenun 9927 dju1dif 9929 djuassen 9935 mapdjuen 9937 pwdjuen 9938 infdju1 9946 pwdju1 9947 pwdjuidm 9948 cardadju 9951 nnadju 9954 ficardadju 9956 ficardun 9957 ficardunOLD 9958 pwsdompw 9961 infxp 9972 infmap2 9975 ackbij1lem5 9981 ackbij1lem9 9985 ackbij1b 9996 fin4en1 10066 isfin4p1 10072 fin23lem23 10083 domtriomlem 10199 axcclem 10214 carden 10308 alephadd 10334 gchdjuidm 10425 gchxpidm 10426 gchpwdom 10427 gchhar 10436 tskuni 10540 fzen2 13687 hashdvds 16474 unbenlem 16607 unben 16608 4sqlem11 16654 pmtrfconj 19072 psgnunilem1 19099 odinf 19168 dfod2 19169 sylow2blem1 19223 sylow2 19229 simpgnsgd 19701 frlmisfrlm 21053 hmphindis 22946 dyadmbl 24762 fnpreimac 31004 padct 31050 f1ocnt 31119 volmeas 32195 sconnpi1 33197 lzenom 40589 fiphp3d 40638 frlmpwfi 40920 isnumbasgrplem3 40927 fiuneneq 41019 rp-isfinite5 41103 enrelmap 41575 enrelmapr 41576 enmappw 41577 uspgrymrelen 45284 |
Copyright terms: Public domain | W3C validator |