| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 8923 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8637 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1548 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1542 Vcvv 3436 class class class wbr 5091 Er wer 8619 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 |
| This theorem is referenced by: entri 8930 snmapen1 8961 xpsnen2g 8983 omxpen 8992 enen1 9030 enen2 9031 map2xp 9060 pwen 9063 ssenen 9064 ssfiALT 9083 fineqvlem 9150 dif1ennnALT 9161 unxpwdom2 9474 infdifsn 9547 infdiffi 9548 karden 9788 xpnum 9844 cardidm 9852 ficardom 9854 carden2a 9859 carden2b 9860 isinffi 9885 pm54.43 9894 en2eqpr 9898 en2eleq 9899 infxpenlem 9904 infxpidm2 9908 mappwen 10003 finnisoeu 10004 djuen 10061 djuenun 10062 dju1dif 10064 djuassen 10070 mapdjuen 10072 pwdjuen 10073 infdju1 10081 pwdju1 10082 pwdjuidm 10083 cardadju 10086 nnadju 10089 ficardadju 10091 ficardun 10092 pwsdompw 10094 infxp 10105 infmap2 10108 ackbij1lem5 10114 ackbij1lem9 10118 ackbij1b 10129 fin4en1 10200 isfin4p1 10206 fin23lem23 10217 domtriomlem 10333 axcclem 10348 carden 10442 alephadd 10468 gchdjuidm 10559 gchxpidm 10560 gchpwdom 10561 gchhar 10570 tskuni 10674 fzen2 13876 hashdvds 16686 unbenlem 16820 unben 16821 4sqlem11 16867 pmtrfconj 19379 psgnunilem1 19406 odinf 19476 dfod2 19477 sylow2blem1 19533 sylow2 19539 simpgnsgd 20015 frlmisfrlm 21786 hmphindis 23713 dyadmbl 25529 fnpreimac 32651 padct 32699 f1ocnt 32780 volmeas 34242 sconnpi1 35281 lzenom 42809 fiphp3d 42858 frlmpwfi 43137 isnumbasgrplem3 43144 fiuneneq 43231 rp-isfinite5 43556 enrelmap 44036 enrelmapr 44037 enmappw 44038 uspgrymrelen 48190 termcterm2 49552 |
| Copyright terms: Public domain | W3C validator |