![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 9061 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 8778 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | mptru 1544 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1538 Vcvv 3488 class class class wbr 5166 Er wer 8760 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-er 8763 df-en 9004 |
This theorem is referenced by: entri 9068 snmapen1 9104 xpsnen2g 9131 omxpen 9140 enen1 9183 enen2 9184 map2xp 9213 pwen 9216 ssenen 9217 ssfiALT 9241 phplem4OLD 9283 php3OLD 9287 snnen2oOLD 9290 fineqvlem 9325 en1eqsnOLD 9337 dif1ennnALT 9339 unxpwdom2 9657 infdifsn 9726 infdiffi 9727 karden 9964 xpnum 10020 cardidm 10028 ficardom 10030 carden2a 10035 carden2b 10036 isinffi 10061 pm54.43 10070 pr2neOLD 10074 en2eqpr 10076 en2eleq 10077 infxpenlem 10082 infxpidm2 10086 mappwen 10181 finnisoeu 10182 djuen 10239 djuenun 10240 dju1dif 10242 djuassen 10248 mapdjuen 10250 pwdjuen 10251 infdju1 10259 pwdju1 10260 pwdjuidm 10261 cardadju 10264 nnadju 10267 ficardadju 10269 ficardun 10270 pwsdompw 10272 infxp 10283 infmap2 10286 ackbij1lem5 10292 ackbij1lem9 10296 ackbij1b 10307 fin4en1 10378 isfin4p1 10384 fin23lem23 10395 domtriomlem 10511 axcclem 10526 carden 10620 alephadd 10646 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 gchhar 10748 tskuni 10852 fzen2 14020 hashdvds 16822 unbenlem 16955 unben 16956 4sqlem11 17002 pmtrfconj 19508 psgnunilem1 19535 odinf 19605 dfod2 19606 sylow2blem1 19662 sylow2 19668 simpgnsgd 20144 frlmisfrlm 21891 hmphindis 23826 dyadmbl 25654 fnpreimac 32689 padct 32733 f1ocnt 32807 volmeas 34195 sconnpi1 35207 lzenom 42726 fiphp3d 42775 frlmpwfi 43055 isnumbasgrplem3 43062 fiuneneq 43153 rp-isfinite5 43479 enrelmap 43959 enrelmapr 43960 enmappw 43961 uspgrymrelen 47876 |
Copyright terms: Public domain | W3C validator |