| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 9020 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8739 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 Vcvv 3464 class class class wbr 5124 Er wer 8721 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-er 8724 df-en 8965 |
| This theorem is referenced by: entri 9027 snmapen1 9058 xpsnen2g 9084 omxpen 9093 enen1 9136 enen2 9137 map2xp 9166 pwen 9169 ssenen 9170 ssfiALT 9193 php3OLD 9238 snnen2oOLD 9241 fineqvlem 9275 en1eqsnOLD 9286 dif1ennnALT 9288 unxpwdom2 9607 infdifsn 9676 infdiffi 9677 karden 9914 xpnum 9970 cardidm 9978 ficardom 9980 carden2a 9985 carden2b 9986 isinffi 10011 pm54.43 10020 pr2neOLD 10024 en2eqpr 10026 en2eleq 10027 infxpenlem 10032 infxpidm2 10036 mappwen 10131 finnisoeu 10132 djuen 10189 djuenun 10190 dju1dif 10192 djuassen 10198 mapdjuen 10200 pwdjuen 10201 infdju1 10209 pwdju1 10210 pwdjuidm 10211 cardadju 10214 nnadju 10217 ficardadju 10219 ficardun 10220 pwsdompw 10222 infxp 10233 infmap2 10236 ackbij1lem5 10242 ackbij1lem9 10246 ackbij1b 10257 fin4en1 10328 isfin4p1 10334 fin23lem23 10345 domtriomlem 10461 axcclem 10476 carden 10570 alephadd 10596 gchdjuidm 10687 gchxpidm 10688 gchpwdom 10689 gchhar 10698 tskuni 10802 fzen2 13992 hashdvds 16799 unbenlem 16933 unben 16934 4sqlem11 16980 pmtrfconj 19452 psgnunilem1 19479 odinf 19549 dfod2 19550 sylow2blem1 19606 sylow2 19612 simpgnsgd 20088 frlmisfrlm 21813 hmphindis 23740 dyadmbl 25558 fnpreimac 32654 padct 32702 f1ocnt 32784 volmeas 34267 sconnpi1 35266 lzenom 42768 fiphp3d 42817 frlmpwfi 43097 isnumbasgrplem3 43104 fiuneneq 43191 rp-isfinite5 43516 enrelmap 43996 enrelmapr 43997 enmappw 43998 uspgrymrelen 48108 termcterm2 49379 |
| Copyright terms: Public domain | W3C validator |