| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 8972 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8686 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 Vcvv 3447 class class class wbr 5107 Er wer 8668 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 |
| This theorem is referenced by: entri 8979 snmapen1 9010 xpsnen2g 9034 omxpen 9043 enen1 9081 enen2 9082 map2xp 9111 pwen 9114 ssenen 9115 ssfiALT 9138 fineqvlem 9209 en1eqsnOLD 9220 dif1ennnALT 9222 unxpwdom2 9541 infdifsn 9610 infdiffi 9611 karden 9848 xpnum 9904 cardidm 9912 ficardom 9914 carden2a 9919 carden2b 9920 isinffi 9945 pm54.43 9954 pr2neOLD 9958 en2eqpr 9960 en2eleq 9961 infxpenlem 9966 infxpidm2 9970 mappwen 10065 finnisoeu 10066 djuen 10123 djuenun 10124 dju1dif 10126 djuassen 10132 mapdjuen 10134 pwdjuen 10135 infdju1 10143 pwdju1 10144 pwdjuidm 10145 cardadju 10148 nnadju 10151 ficardadju 10153 ficardun 10154 pwsdompw 10156 infxp 10167 infmap2 10170 ackbij1lem5 10176 ackbij1lem9 10180 ackbij1b 10191 fin4en1 10262 isfin4p1 10268 fin23lem23 10279 domtriomlem 10395 axcclem 10410 carden 10504 alephadd 10530 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 gchhar 10632 tskuni 10736 fzen2 13934 hashdvds 16745 unbenlem 16879 unben 16880 4sqlem11 16926 pmtrfconj 19396 psgnunilem1 19423 odinf 19493 dfod2 19494 sylow2blem1 19550 sylow2 19556 simpgnsgd 20032 frlmisfrlm 21757 hmphindis 23684 dyadmbl 25501 fnpreimac 32595 padct 32643 f1ocnt 32725 volmeas 34221 sconnpi1 35226 lzenom 42758 fiphp3d 42807 frlmpwfi 43087 isnumbasgrplem3 43094 fiuneneq 43181 rp-isfinite5 43506 enrelmap 43986 enrelmapr 43987 enmappw 43988 uspgrymrelen 48141 termcterm2 49503 |
| Copyright terms: Public domain | W3C validator |