| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
| Ref | Expression |
|---|---|
| entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 8933 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ertr 8647 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 Vcvv 3438 class class class wbr 5095 Er wer 8629 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8632 df-en 8880 |
| This theorem is referenced by: entri 8940 snmapen1 8971 xpsnen2g 8994 omxpen 9003 enen1 9041 enen2 9042 map2xp 9071 pwen 9074 ssenen 9075 ssfiALT 9098 fineqvlem 9167 en1eqsnOLD 9178 dif1ennnALT 9180 unxpwdom2 9499 infdifsn 9572 infdiffi 9573 karden 9810 xpnum 9866 cardidm 9874 ficardom 9876 carden2a 9881 carden2b 9882 isinffi 9907 pm54.43 9916 en2eqpr 9920 en2eleq 9921 infxpenlem 9926 infxpidm2 9930 mappwen 10025 finnisoeu 10026 djuen 10083 djuenun 10084 dju1dif 10086 djuassen 10092 mapdjuen 10094 pwdjuen 10095 infdju1 10103 pwdju1 10104 pwdjuidm 10105 cardadju 10108 nnadju 10111 ficardadju 10113 ficardun 10114 pwsdompw 10116 infxp 10127 infmap2 10130 ackbij1lem5 10136 ackbij1lem9 10140 ackbij1b 10151 fin4en1 10222 isfin4p1 10228 fin23lem23 10239 domtriomlem 10355 axcclem 10370 carden 10464 alephadd 10490 gchdjuidm 10581 gchxpidm 10582 gchpwdom 10583 gchhar 10592 tskuni 10696 fzen2 13894 hashdvds 16704 unbenlem 16838 unben 16839 4sqlem11 16885 pmtrfconj 19363 psgnunilem1 19390 odinf 19460 dfod2 19461 sylow2blem1 19517 sylow2 19523 simpgnsgd 19999 frlmisfrlm 21773 hmphindis 23700 dyadmbl 25517 fnpreimac 32628 padct 32676 f1ocnt 32758 volmeas 34200 sconnpi1 35214 lzenom 42746 fiphp3d 42795 frlmpwfi 43074 isnumbasgrplem3 43081 fiuneneq 43168 rp-isfinite5 43493 enrelmap 43973 enrelmapr 43974 enmappw 43975 uspgrymrelen 48141 termcterm2 49503 |
| Copyright terms: Public domain | W3C validator |