MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   GIF version

Theorem efgsrel 18796
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsrel (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsrel
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18792 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))))
87simp1bi 1139 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
9 eldifsn 4718 . . . . 5 (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊𝐹 ≠ ∅))
10 lennncl 13879 . . . . 5 ((𝐹 ∈ Word 𝑊𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
119, 10sylbi 218 . . . 4 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
12 fzo0end 13124 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
138, 11, 123syl 18 . . 3 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
14 nnm1nn0 11932 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
158, 11, 143syl 18 . . . 4 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ ℕ0)
16 eleq1 2905 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^(♯‘𝐹))))
17 fveq2 6669 . . . . . . . 8 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
1817breq2d 5075 . . . . . . 7 (𝑎 = 0 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘0)))
1916, 18imbi12d 346 . . . . . 6 (𝑎 = 0 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0))))
2019imbi2d 342 . . . . 5 (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))))
21 eleq1 2905 . . . . . . 7 (𝑎 = 𝑖 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0..^(♯‘𝐹))))
22 fveq2 6669 . . . . . . . 8 (𝑎 = 𝑖 → (𝐹𝑎) = (𝐹𝑖))
2322breq2d 5075 . . . . . . 7 (𝑎 = 𝑖 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹𝑖)))
2421, 23imbi12d 346 . . . . . 6 (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
2524imbi2d 342 . . . . 5 (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)))))
26 eleq1 2905 . . . . . . 7 (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(♯‘𝐹))))
27 fveq2 6669 . . . . . . . 8 (𝑎 = (𝑖 + 1) → (𝐹𝑎) = (𝐹‘(𝑖 + 1)))
2827breq2d 5075 . . . . . . 7 (𝑎 = (𝑖 + 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘(𝑖 + 1))))
2926, 28imbi12d 346 . . . . . 6 (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
3029imbi2d 342 . . . . 5 (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
31 eleq1 2905 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))))
32 fveq2 6669 . . . . . . . 8 (𝑎 = ((♯‘𝐹) − 1) → (𝐹𝑎) = (𝐹‘((♯‘𝐹) − 1)))
3332breq2d 5075 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
3431, 33imbi12d 346 . . . . . 6 (𝑎 = ((♯‘𝐹) − 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
3534imbi2d 342 . . . . 5 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))))
361, 2efger 18780 . . . . . . . 8 Er 𝑊
3736a1i 11 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → Er 𝑊)
38 eldifi 4107 . . . . . . . . 9 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊)
39 wrdf 13861 . . . . . . . . 9 (𝐹 ∈ Word 𝑊𝐹:(0..^(♯‘𝐹))⟶𝑊)
408, 38, 393syl 18 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑊)
4140ffvelrnda 6849 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∈ 𝑊)
4237, 41erref 8304 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) (𝐹‘0))
4342ex 413 . . . . 5 (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))
44 elnn0uz 12277 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ (ℤ‘0))
45 peano2fzor 13139 . . . . . . . . . . . 12 ((𝑖 ∈ (ℤ‘0) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
4644, 45sylanb 581 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
47463adant1 1124 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
48473expia 1115 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → 𝑖 ∈ (0..^(♯‘𝐹))))
4948imim1d 82 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
50403ad2ant1 1127 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝐹:(0..^(♯‘𝐹))⟶𝑊)
5150, 47ffvelrnd 6850 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ 𝑊)
52 fvoveq1 7173 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1)))
5352fveq2d 6673 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5453rneqd 5807 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5527, 54eleq12d 2912 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 + 1) → ((𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
567simp3bi 1141 . . . . . . . . . . . . . . 15 (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
57563ad2ant1 1127 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
58 nn0p1nn 11930 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ)
59583ad2ant2 1128 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ℕ)
60 nnuz 12275 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
6159, 60syl6eleq 2928 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (ℤ‘1))
62 elfzolt2b 13044 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
63623ad2ant3 1129 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
64 elfzo3 13049 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (1..^(♯‘𝐹)) ↔ ((𝑖 + 1) ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹))))
6561, 63, 64sylanbrc 583 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (1..^(♯‘𝐹)))
6655, 57, 65rspcdva 3629 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
67 nn0cn 11901 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
68673ad2ant2 1128 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ ℂ)
69 ax-1cn 10589 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
70 pncan 10886 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑖 + 1) − 1) = 𝑖)
7168, 69, 70sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝑖 + 1) − 1) = 𝑖)
7271fveq2d 6673 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑖 + 1) − 1)) = (𝐹𝑖))
7372fveq2d 6673 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹𝑖)))
7473rneqd 5807 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹𝑖)))
7566, 74eleqtrd 2920 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖)))
761, 2, 3, 4efgi2 18787 . . . . . . . . . . . 12 (((𝐹𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7751, 75, 76syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7836a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → Er 𝑊)
7978ertr 8299 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (((𝐹‘0) (𝐹𝑖) ∧ (𝐹𝑖) (𝐹‘(𝑖 + 1))) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
8077, 79mpan2d 690 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
81803expia 1115 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8281a2d 29 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8349, 82syld 47 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8483expcom 414 . . . . . 6 (𝑖 ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8584a2d 29 . . . . 5 (𝑖 ∈ ℕ0 → ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8620, 25, 30, 35, 43, 85nn0ind 12071 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
8715, 86mpcom 38 . . 3 (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
8813, 87mpd 15 . 2 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))
891, 2, 3, 4, 5, 6efgsval 18793 . 2 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9088, 89breqtrrd 5091 1 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  {crab 3147  cdif 3937  c0 4295  {csn 4564  cop 4570  cotp 4572   ciun 4917   class class class wbr 5063  cmpt 5143   I cid 5458   × cxp 5552  dom cdm 5554  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7150  cmpo 7152  1oc1o 8091  2oc2o 8092   Er wer 8281  cc 10529  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cn 11632  0cn0 11891  cuz 12237  ...cfz 12887  ..^cfzo 13028  chash 13685  Word cword 13856   splice csplice 14106  ⟨“cs2 14198   ~FG cefg 18768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-ot 4573  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-ec 8286  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-s2 14205  df-efg 18771
This theorem is referenced by:  efgredeu  18814  efgred2  18815
  Copyright terms: Public domain W3C validator