MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   GIF version

Theorem efgsrel 18425
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsrel (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsrel
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18421 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))))
87simp1bi 1175 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
9 eldifsn 4474 . . . . 5 (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊𝐹 ≠ ∅))
10 lennncl 13511 . . . . 5 ((𝐹 ∈ Word 𝑊𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
119, 10sylbi 208 . . . 4 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
12 fzo0end 12773 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
138, 11, 123syl 18 . . 3 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
14 nnm1nn0 11585 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
158, 11, 143syl 18 . . . 4 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ ℕ0)
16 eleq1 2832 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^(♯‘𝐹))))
17 fveq2 6379 . . . . . . . 8 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
1817breq2d 4823 . . . . . . 7 (𝑎 = 0 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘0)))
1916, 18imbi12d 335 . . . . . 6 (𝑎 = 0 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0))))
2019imbi2d 331 . . . . 5 (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))))
21 eleq1 2832 . . . . . . 7 (𝑎 = 𝑖 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0..^(♯‘𝐹))))
22 fveq2 6379 . . . . . . . 8 (𝑎 = 𝑖 → (𝐹𝑎) = (𝐹𝑖))
2322breq2d 4823 . . . . . . 7 (𝑎 = 𝑖 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹𝑖)))
2421, 23imbi12d 335 . . . . . 6 (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
2524imbi2d 331 . . . . 5 (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)))))
26 eleq1 2832 . . . . . . 7 (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(♯‘𝐹))))
27 fveq2 6379 . . . . . . . 8 (𝑎 = (𝑖 + 1) → (𝐹𝑎) = (𝐹‘(𝑖 + 1)))
2827breq2d 4823 . . . . . . 7 (𝑎 = (𝑖 + 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘(𝑖 + 1))))
2926, 28imbi12d 335 . . . . . 6 (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
3029imbi2d 331 . . . . 5 (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
31 eleq1 2832 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))))
32 fveq2 6379 . . . . . . . 8 (𝑎 = ((♯‘𝐹) − 1) → (𝐹𝑎) = (𝐹‘((♯‘𝐹) − 1)))
3332breq2d 4823 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
3431, 33imbi12d 335 . . . . . 6 (𝑎 = ((♯‘𝐹) − 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
3534imbi2d 331 . . . . 5 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))))
361, 2efger 18409 . . . . . . . 8 Er 𝑊
3736a1i 11 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → Er 𝑊)
38 eldifi 3896 . . . . . . . . 9 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊)
39 wrdf 13496 . . . . . . . . 9 (𝐹 ∈ Word 𝑊𝐹:(0..^(♯‘𝐹))⟶𝑊)
408, 38, 393syl 18 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑊)
4140ffvelrnda 6553 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∈ 𝑊)
4237, 41erref 7971 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) (𝐹‘0))
4342ex 401 . . . . 5 (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))
44 elnn0uz 11930 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ (ℤ‘0))
45 peano2fzor 12788 . . . . . . . . . . . 12 ((𝑖 ∈ (ℤ‘0) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
4644, 45sylanb 576 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
47463adant1 1160 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
48473expia 1150 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → 𝑖 ∈ (0..^(♯‘𝐹))))
4948imim1d 82 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
50403ad2ant1 1163 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝐹:(0..^(♯‘𝐹))⟶𝑊)
5150, 47ffvelrnd 6554 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ 𝑊)
52 fvoveq1 6869 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1)))
5352fveq2d 6383 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5453rneqd 5523 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5527, 54eleq12d 2838 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 + 1) → ((𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
567simp3bi 1177 . . . . . . . . . . . . . . 15 (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
57563ad2ant1 1163 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
58 nn0p1nn 11583 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ)
59583ad2ant2 1164 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ℕ)
60 nnuz 11928 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
6159, 60syl6eleq 2854 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (ℤ‘1))
62 elfzolt2b 12694 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
63623ad2ant3 1165 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
64 elfzo3 12699 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (1..^(♯‘𝐹)) ↔ ((𝑖 + 1) ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹))))
6561, 63, 64sylanbrc 578 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (1..^(♯‘𝐹)))
6655, 57, 65rspcdva 3468 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
67 nn0cn 11553 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
68673ad2ant2 1164 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ ℂ)
69 ax-1cn 10251 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
70 pncan 10545 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑖 + 1) − 1) = 𝑖)
7168, 69, 70sylancl 580 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝑖 + 1) − 1) = 𝑖)
7271fveq2d 6383 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑖 + 1) − 1)) = (𝐹𝑖))
7372fveq2d 6383 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹𝑖)))
7473rneqd 5523 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹𝑖)))
7566, 74eleqtrd 2846 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖)))
761, 2, 3, 4efgi2 18416 . . . . . . . . . . . 12 (((𝐹𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7751, 75, 76syl2anc 579 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7836a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → Er 𝑊)
7978ertr 7966 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (((𝐹‘0) (𝐹𝑖) ∧ (𝐹𝑖) (𝐹‘(𝑖 + 1))) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
8077, 79mpan2d 685 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
81803expia 1150 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8281a2d 29 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8349, 82syld 47 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8483expcom 402 . . . . . 6 (𝑖 ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8584a2d 29 . . . . 5 (𝑖 ∈ ℕ0 → ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8620, 25, 30, 35, 43, 85nn0ind 11724 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
8715, 86mpcom 38 . . 3 (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
8813, 87mpd 15 . 2 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))
891, 2, 3, 4, 5, 6efgsval 18422 . 2 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9088, 89breqtrrd 4839 1 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  cdif 3731  c0 4081  {csn 4336  cop 4342  cotp 4344   ciun 4678   class class class wbr 4811  cmpt 4890   I cid 5186   × cxp 5277  dom cdm 5279  ran crn 5280  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  1𝑜c1o 7761  2𝑜c2o 7762   Er wer 7948  cc 10191  0cc0 10193  1c1 10194   + caddc 10196  cmin 10524  cn 11278  0cn0 11542  cuz 11891  ...cfz 12538  ..^cfzo 12678  chash 13326  Word cword 13491   splice csplice 13777  ⟨“cs2 13884   ~FG cefg 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-ot 4345  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-ec 7953  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-n0 11543  df-z 11629  df-uz 11892  df-fz 12539  df-fzo 12679  df-hash 13327  df-word 13492  df-concat 13548  df-s1 13573  df-substr 13623  df-pfx 13672  df-splice 13779  df-s2 13891  df-efg 18400
This theorem is referenced by:  efgredeu  18445  efgred2  18446
  Copyright terms: Public domain W3C validator