Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   GIF version

Theorem efgsrel 18927
 Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsrel (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsrel
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18923 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))))
87simp1bi 1142 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
9 eldifsn 4677 . . . . 5 (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊𝐹 ≠ ∅))
10 lennncl 13933 . . . . 5 ((𝐹 ∈ Word 𝑊𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
119, 10sylbi 220 . . . 4 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
12 fzo0end 13178 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
138, 11, 123syl 18 . . 3 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
14 nnm1nn0 11975 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
158, 11, 143syl 18 . . . 4 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ ℕ0)
16 eleq1 2839 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^(♯‘𝐹))))
17 fveq2 6658 . . . . . . . 8 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
1817breq2d 5044 . . . . . . 7 (𝑎 = 0 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘0)))
1916, 18imbi12d 348 . . . . . 6 (𝑎 = 0 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0))))
2019imbi2d 344 . . . . 5 (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))))
21 eleq1 2839 . . . . . . 7 (𝑎 = 𝑖 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0..^(♯‘𝐹))))
22 fveq2 6658 . . . . . . . 8 (𝑎 = 𝑖 → (𝐹𝑎) = (𝐹𝑖))
2322breq2d 5044 . . . . . . 7 (𝑎 = 𝑖 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹𝑖)))
2421, 23imbi12d 348 . . . . . 6 (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
2524imbi2d 344 . . . . 5 (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)))))
26 eleq1 2839 . . . . . . 7 (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(♯‘𝐹))))
27 fveq2 6658 . . . . . . . 8 (𝑎 = (𝑖 + 1) → (𝐹𝑎) = (𝐹‘(𝑖 + 1)))
2827breq2d 5044 . . . . . . 7 (𝑎 = (𝑖 + 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘(𝑖 + 1))))
2926, 28imbi12d 348 . . . . . 6 (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
3029imbi2d 344 . . . . 5 (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
31 eleq1 2839 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))))
32 fveq2 6658 . . . . . . . 8 (𝑎 = ((♯‘𝐹) − 1) → (𝐹𝑎) = (𝐹‘((♯‘𝐹) − 1)))
3332breq2d 5044 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
3431, 33imbi12d 348 . . . . . 6 (𝑎 = ((♯‘𝐹) − 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
3534imbi2d 344 . . . . 5 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))))
361, 2efger 18911 . . . . . . . 8 Er 𝑊
3736a1i 11 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → Er 𝑊)
38 eldifi 4032 . . . . . . . . 9 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊)
39 wrdf 13918 . . . . . . . . 9 (𝐹 ∈ Word 𝑊𝐹:(0..^(♯‘𝐹))⟶𝑊)
408, 38, 393syl 18 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑊)
4140ffvelrnda 6842 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∈ 𝑊)
4237, 41erref 8319 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) (𝐹‘0))
4342ex 416 . . . . 5 (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))
44 elnn0uz 12323 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ (ℤ‘0))
45 peano2fzor 13193 . . . . . . . . . . . 12 ((𝑖 ∈ (ℤ‘0) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
4644, 45sylanb 584 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
47463adant1 1127 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
48473expia 1118 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → 𝑖 ∈ (0..^(♯‘𝐹))))
4948imim1d 82 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
50403ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝐹:(0..^(♯‘𝐹))⟶𝑊)
5150, 47ffvelrnd 6843 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ 𝑊)
52 fvoveq1 7173 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1)))
5352fveq2d 6662 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5453rneqd 5779 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5527, 54eleq12d 2846 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 + 1) → ((𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
567simp3bi 1144 . . . . . . . . . . . . . . 15 (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
57563ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
58 nn0p1nn 11973 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ)
59583ad2ant2 1131 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ℕ)
60 nnuz 12321 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
6159, 60eleqtrdi 2862 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (ℤ‘1))
62 elfzolt2b 13098 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
63623ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
64 elfzo3 13103 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (1..^(♯‘𝐹)) ↔ ((𝑖 + 1) ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹))))
6561, 63, 64sylanbrc 586 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (1..^(♯‘𝐹)))
6655, 57, 65rspcdva 3543 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
67 nn0cn 11944 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
68673ad2ant2 1131 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ ℂ)
69 ax-1cn 10633 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
70 pncan 10930 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑖 + 1) − 1) = 𝑖)
7168, 69, 70sylancl 589 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝑖 + 1) − 1) = 𝑖)
7271fveq2d 6662 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑖 + 1) − 1)) = (𝐹𝑖))
7372fveq2d 6662 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹𝑖)))
7473rneqd 5779 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹𝑖)))
7566, 74eleqtrd 2854 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖)))
761, 2, 3, 4efgi2 18918 . . . . . . . . . . . 12 (((𝐹𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7751, 75, 76syl2anc 587 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7836a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → Er 𝑊)
7978ertr 8314 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (((𝐹‘0) (𝐹𝑖) ∧ (𝐹𝑖) (𝐹‘(𝑖 + 1))) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
8077, 79mpan2d 693 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
81803expia 1118 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8281a2d 29 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8349, 82syld 47 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8483expcom 417 . . . . . 6 (𝑖 ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8584a2d 29 . . . . 5 (𝑖 ∈ ℕ0 → ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8620, 25, 30, 35, 43, 85nn0ind 12116 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
8715, 86mpcom 38 . . 3 (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
8813, 87mpd 15 . 2 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))
891, 2, 3, 4, 5, 6efgsval 18924 . 2 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9088, 89breqtrrd 5060 1 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074   ∖ cdif 3855  ∅c0 4225  {csn 4522  ⟨cop 4528  ⟨cotp 4530  ∪ ciun 4883   class class class wbr 5032   ↦ cmpt 5112   I cid 5429   × cxp 5522  dom cdm 5524  ran crn 5525  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152  1oc1o 8105  2oc2o 8106   Er wer 8296  ℂcc 10573  0cc0 10575  1c1 10576   + caddc 10578   − cmin 10908  ℕcn 11674  ℕ0cn0 11934  ℤ≥cuz 12282  ...cfz 12939  ..^cfzo 13082  ♯chash 13740  Word cword 13913   splice csplice 14158  ⟨“cs2 14250   ~FG cefg 18899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-substr 14050  df-pfx 14080  df-splice 14159  df-s2 14257  df-efg 18902 This theorem is referenced by:  efgredeu  18945  efgred2  18946
 Copyright terms: Public domain W3C validator