MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   GIF version

Theorem efgsrel 19647
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsrel (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsrel
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 19643 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))))
87simp1bi 1145 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
9 eldifsn 4738 . . . . 5 (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊𝐹 ≠ ∅))
10 lennncl 14441 . . . . 5 ((𝐹 ∈ Word 𝑊𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
119, 10sylbi 217 . . . 4 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
12 fzo0end 13658 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
138, 11, 123syl 18 . . 3 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
14 nnm1nn0 12422 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
158, 11, 143syl 18 . . . 4 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ ℕ0)
16 eleq1 2819 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^(♯‘𝐹))))
17 fveq2 6822 . . . . . . . 8 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
1817breq2d 5103 . . . . . . 7 (𝑎 = 0 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘0)))
1916, 18imbi12d 344 . . . . . 6 (𝑎 = 0 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0))))
2019imbi2d 340 . . . . 5 (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))))
21 eleq1 2819 . . . . . . 7 (𝑎 = 𝑖 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0..^(♯‘𝐹))))
22 fveq2 6822 . . . . . . . 8 (𝑎 = 𝑖 → (𝐹𝑎) = (𝐹𝑖))
2322breq2d 5103 . . . . . . 7 (𝑎 = 𝑖 → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹𝑖)))
2421, 23imbi12d 344 . . . . . 6 (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
2524imbi2d 340 . . . . 5 (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)))))
26 eleq1 2819 . . . . . . 7 (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(♯‘𝐹))))
27 fveq2 6822 . . . . . . . 8 (𝑎 = (𝑖 + 1) → (𝐹𝑎) = (𝐹‘(𝑖 + 1)))
2827breq2d 5103 . . . . . . 7 (𝑎 = (𝑖 + 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘(𝑖 + 1))))
2926, 28imbi12d 344 . . . . . 6 (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
3029imbi2d 340 . . . . 5 (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
31 eleq1 2819 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))))
32 fveq2 6822 . . . . . . . 8 (𝑎 = ((♯‘𝐹) − 1) → (𝐹𝑎) = (𝐹‘((♯‘𝐹) − 1)))
3332breq2d 5103 . . . . . . 7 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹‘0) (𝐹𝑎) ↔ (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
3431, 33imbi12d 344 . . . . . 6 (𝑎 = ((♯‘𝐹) − 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎)) ↔ (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
3534imbi2d 340 . . . . 5 (𝑎 = ((♯‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))))
361, 2efger 19631 . . . . . . . 8 Er 𝑊
3736a1i 11 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → Er 𝑊)
38 eldifi 4081 . . . . . . . . 9 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊)
39 wrdf 14425 . . . . . . . . 9 (𝐹 ∈ Word 𝑊𝐹:(0..^(♯‘𝐹))⟶𝑊)
408, 38, 393syl 18 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑊)
4140ffvelcdmda 7017 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∈ 𝑊)
4237, 41erref 8642 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) (𝐹‘0))
4342ex 412 . . . . 5 (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘0)))
44 elnn0uz 12777 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ (ℤ‘0))
45 peano2fzor 13675 . . . . . . . . . . . 12 ((𝑖 ∈ (ℤ‘0) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
4644, 45sylanb 581 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
47463adant1 1130 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹)))
48473expia 1121 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → 𝑖 ∈ (0..^(♯‘𝐹))))
4948imim1d 82 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))))
50403ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝐹:(0..^(♯‘𝐹))⟶𝑊)
5150, 47ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ 𝑊)
52 fvoveq1 7369 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1)))
5352fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5453rneqd 5878 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
5527, 54eleq12d 2825 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 + 1) → ((𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))))
567simp3bi 1147 . . . . . . . . . . . . . . 15 (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
57563ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))
58 nn0p1nn 12420 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ)
59583ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ℕ)
60 nnuz 12775 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
6159, 60eleqtrdi 2841 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (ℤ‘1))
62 elfzolt2b 13570 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
63623ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))
64 elfzo3 13576 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (1..^(♯‘𝐹)) ↔ ((𝑖 + 1) ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹))))
6561, 63, 64sylanbrc 583 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (1..^(♯‘𝐹)))
6655, 57, 65rspcdva 3578 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))
67 nn0cn 12391 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
68673ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ ℂ)
69 ax-1cn 11064 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
70 pncan 11366 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑖 + 1) − 1) = 𝑖)
7168, 69, 70sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝑖 + 1) − 1) = 𝑖)
7271fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑖 + 1) − 1)) = (𝐹𝑖))
7372fveq2d 6826 . . . . . . . . . . . . . 14 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹𝑖)))
7473rneqd 5878 . . . . . . . . . . . . 13 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹𝑖)))
7566, 74eleqtrd 2833 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖)))
761, 2, 3, 4efgi2 19638 . . . . . . . . . . . 12 (((𝐹𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹𝑖))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7751, 75, 76syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) (𝐹‘(𝑖 + 1)))
7836a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → Er 𝑊)
7978ertr 8637 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → (((𝐹‘0) (𝐹𝑖) ∧ (𝐹𝑖) (𝐹‘(𝑖 + 1))) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
8077, 79mpan2d 694 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1))))
81803expia 1121 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → ((𝐹‘0) (𝐹𝑖) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8281a2d 29 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8349, 82syld 47 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝑖 ∈ ℕ0) → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1)))))
8483expcom 413 . . . . . 6 (𝑖 ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8584a2d 29 . . . . 5 (𝑖 ∈ ℕ0 → ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘(𝑖 + 1))))))
8620, 25, 30, 35, 43, 85nn0ind 12568 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))))
8715, 86mpcom 38 . . 3 (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1))))
8813, 87mpd 15 . 2 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝐹‘((♯‘𝐹) − 1)))
891, 2, 3, 4, 5, 6efgsval 19644 . 2 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9088, 89breqtrrd 5119 1 (𝐹 ∈ dom 𝑆 → (𝐹‘0) (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3899  c0 4283  {csn 4576  cop 4582  cotp 4584   ciun 4941   class class class wbr 5091  cmpt 5172   I cid 5510   × cxp 5614  dom cdm 5616  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379   Er wer 8619  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  cmin 11344  cn 12125  0cn0 12381  cuz 12732  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   splice csplice 14656  ⟨“cs2 14748   ~FG cefg 19619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-s2 14755  df-efg 19622
This theorem is referenced by:  efgredeu  19665  efgred2  19666
  Copyright terms: Public domain W3C validator