Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . 6
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . . . . 6
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . . . . 6
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . . . . 6
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | | efgred.d |
. . . . . 6
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
6 | | efgred.s |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsdm 18923 |
. . . . 5
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹‘𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))))) |
8 | 7 | simp1bi 1142 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
9 | | eldifsn 4677 |
. . . . 5
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐹 ∈ Word 𝑊 ∧ 𝐹 ≠ ∅)) |
10 | | lennncl 13933 |
. . . . 5
⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈
ℕ) |
11 | 9, 10 | sylbi 220 |
. . . 4
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) →
(♯‘𝐹) ∈
ℕ) |
12 | | fzo0end 13178 |
. . . 4
⊢
((♯‘𝐹)
∈ ℕ → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
13 | 8, 11, 12 | 3syl 18 |
. . 3
⊢ (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
14 | | nnm1nn0 11975 |
. . . . 5
⊢
((♯‘𝐹)
∈ ℕ → ((♯‘𝐹) − 1) ∈
ℕ0) |
15 | 8, 11, 14 | 3syl 18 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈
ℕ0) |
16 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑎 = 0 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^(♯‘𝐹)))) |
17 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = 0 → (𝐹‘𝑎) = (𝐹‘0)) |
18 | 17 | breq2d 5044 |
. . . . . . 7
⊢ (𝑎 = 0 → ((𝐹‘0) ∼ (𝐹‘𝑎) ↔ (𝐹‘0) ∼ (𝐹‘0))) |
19 | 16, 18 | imbi12d 348 |
. . . . . 6
⊢ (𝑎 = 0 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎)) ↔ (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘0)))) |
20 | 19 | imbi2d 344 |
. . . . 5
⊢ (𝑎 = 0 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘0))))) |
21 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑎 = 𝑖 → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0..^(♯‘𝐹)))) |
22 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = 𝑖 → (𝐹‘𝑎) = (𝐹‘𝑖)) |
23 | 22 | breq2d 5044 |
. . . . . . 7
⊢ (𝑎 = 𝑖 → ((𝐹‘0) ∼ (𝐹‘𝑎) ↔ (𝐹‘0) ∼ (𝐹‘𝑖))) |
24 | 21, 23 | imbi12d 348 |
. . . . . 6
⊢ (𝑎 = 𝑖 → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎)) ↔ (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑖)))) |
25 | 24 | imbi2d 344 |
. . . . 5
⊢ (𝑎 = 𝑖 → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑖))))) |
26 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑎 = (𝑖 + 1) → (𝑎 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 + 1) ∈ (0..^(♯‘𝐹)))) |
27 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = (𝑖 + 1) → (𝐹‘𝑎) = (𝐹‘(𝑖 + 1))) |
28 | 27 | breq2d 5044 |
. . . . . . 7
⊢ (𝑎 = (𝑖 + 1) → ((𝐹‘0) ∼ (𝐹‘𝑎) ↔ (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))) |
29 | 26, 28 | imbi12d 348 |
. . . . . 6
⊢ (𝑎 = (𝑖 + 1) → ((𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎)) ↔ ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1))))) |
30 | 29 | imbi2d 344 |
. . . . 5
⊢ (𝑎 = (𝑖 + 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎))) ↔ (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))))) |
31 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑎 = ((♯‘𝐹) − 1) → (𝑎 ∈
(0..^(♯‘𝐹))
↔ ((♯‘𝐹)
− 1) ∈ (0..^(♯‘𝐹)))) |
32 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = ((♯‘𝐹) − 1) → (𝐹‘𝑎) = (𝐹‘((♯‘𝐹) − 1))) |
33 | 32 | breq2d 5044 |
. . . . . . 7
⊢ (𝑎 = ((♯‘𝐹) − 1) → ((𝐹‘0) ∼ (𝐹‘𝑎) ↔ (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) − 1)))) |
34 | 31, 33 | imbi12d 348 |
. . . . . 6
⊢ (𝑎 = ((♯‘𝐹) − 1) → ((𝑎 ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘𝑎)) ↔ (((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) −
1))))) |
35 | 34 | imbi2d 344 |
. . . . 5
⊢ (𝑎 = ((♯‘𝐹) − 1) → ((𝐹 ∈ dom 𝑆 → (𝑎 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑎))) ↔ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) −
1)))))) |
36 | 1, 2 | efger 18911 |
. . . . . . . 8
⊢ ∼ Er
𝑊 |
37 | 36 | a1i 11 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → ∼ Er 𝑊) |
38 | | eldifi 4032 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ∈ Word 𝑊) |
39 | | wrdf 13918 |
. . . . . . . . 9
⊢ (𝐹 ∈ Word 𝑊 → 𝐹:(0..^(♯‘𝐹))⟶𝑊) |
40 | 8, 38, 39 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 → 𝐹:(0..^(♯‘𝐹))⟶𝑊) |
41 | 40 | ffvelrnda 6842 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∈ 𝑊) |
42 | 37, 41 | erref 8319 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝐹‘0) ∼ (𝐹‘0)) |
43 | 42 | ex 416 |
. . . . 5
⊢ (𝐹 ∈ dom 𝑆 → (0 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘0))) |
44 | | elnn0uz 12323 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ0
↔ 𝑖 ∈
(ℤ≥‘0)) |
45 | | peano2fzor 13193 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈
(ℤ≥‘0) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0..^(♯‘𝐹))) |
46 | 44, 45 | sylanb 584 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℕ0
∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ 𝑖 ∈
(0..^(♯‘𝐹))) |
47 | 46 | 3adant1 1127 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ 𝑖 ∈
(0..^(♯‘𝐹))) |
48 | 47 | 3expia 1118 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈
(0..^(♯‘𝐹))
→ 𝑖 ∈
(0..^(♯‘𝐹)))) |
49 | 48 | imim1d 82 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0) → ((𝑖 ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑖)))) |
50 | 40 | 3ad2ant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ 𝐹:(0..^(♯‘𝐹))⟶𝑊) |
51 | 50, 47 | ffvelrnd 6843 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝐹‘𝑖) ∈ 𝑊) |
52 | | fvoveq1 7173 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑖 + 1) → (𝐹‘(𝑎 − 1)) = (𝐹‘((𝑖 + 1) − 1))) |
53 | 52 | fveq2d 6662 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑖 + 1) → (𝑇‘(𝐹‘(𝑎 − 1))) = (𝑇‘(𝐹‘((𝑖 + 1) − 1)))) |
54 | 53 | rneqd 5779 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑖 + 1) → ran (𝑇‘(𝐹‘(𝑎 − 1))) = ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))) |
55 | 27, 54 | eleq12d 2846 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑖 + 1) → ((𝐹‘𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1))) ↔ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))))) |
56 | 7 | simp3bi 1144 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑎 ∈ (1..^(♯‘𝐹))(𝐹‘𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))) |
57 | 56 | 3ad2ant1 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ ∀𝑎 ∈
(1..^(♯‘𝐹))(𝐹‘𝑎) ∈ ran (𝑇‘(𝐹‘(𝑎 − 1)))) |
58 | | nn0p1nn 11973 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ) |
59 | 58 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝑖 + 1) ∈
ℕ) |
60 | | nnuz 12321 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
61 | 59, 60 | eleqtrdi 2862 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝑖 + 1) ∈
(ℤ≥‘1)) |
62 | | elfzolt2b 13098 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 + 1) ∈
(0..^(♯‘𝐹))
→ (𝑖 + 1) ∈
((𝑖 +
1)..^(♯‘𝐹))) |
63 | 62 | 3ad2ant3 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝑖 + 1) ∈
((𝑖 +
1)..^(♯‘𝐹))) |
64 | | elfzo3 13103 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈
(1..^(♯‘𝐹))
↔ ((𝑖 + 1) ∈
(ℤ≥‘1) ∧ (𝑖 + 1) ∈ ((𝑖 + 1)..^(♯‘𝐹)))) |
65 | 61, 63, 64 | sylanbrc 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝑖 + 1) ∈
(1..^(♯‘𝐹))) |
66 | 55, 57, 65 | rspcdva 3543 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1)))) |
67 | | nn0cn 11944 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℂ) |
68 | 67 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ 𝑖 ∈
ℂ) |
69 | | ax-1cn 10633 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
70 | | pncan 10930 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑖 + 1)
− 1) = 𝑖) |
71 | 68, 69, 70 | sylancl 589 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ ((𝑖 + 1) − 1)
= 𝑖) |
72 | 71 | fveq2d 6662 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝐹‘((𝑖 + 1) − 1)) = (𝐹‘𝑖)) |
73 | 72 | fveq2d 6662 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = (𝑇‘(𝐹‘𝑖))) |
74 | 73 | rneqd 5779 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ ran (𝑇‘(𝐹‘((𝑖 + 1) − 1))) = ran (𝑇‘(𝐹‘𝑖))) |
75 | 66, 74 | eleqtrd 2854 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘𝑖))) |
76 | 1, 2, 3, 4 | efgi2 18918 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑖) ∈ 𝑊 ∧ (𝐹‘(𝑖 + 1)) ∈ ran (𝑇‘(𝐹‘𝑖))) → (𝐹‘𝑖) ∼ (𝐹‘(𝑖 + 1))) |
77 | 51, 75, 76 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (𝐹‘𝑖) ∼ (𝐹‘(𝑖 + 1))) |
78 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ ∼ Er 𝑊) |
79 | 78 | ertr 8314 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ (((𝐹‘0) ∼ (𝐹‘𝑖) ∧ (𝐹‘𝑖) ∼ (𝐹‘(𝑖 + 1))) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))) |
80 | 77, 79 | mpan2d 693 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0 ∧ (𝑖 + 1) ∈
(0..^(♯‘𝐹)))
→ ((𝐹‘0) ∼ (𝐹‘𝑖) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))) |
81 | 80 | 3expia 1118 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) ∈
(0..^(♯‘𝐹))
→ ((𝐹‘0) ∼ (𝐹‘𝑖) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1))))) |
82 | 81 | a2d 29 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1))))) |
83 | 49, 82 | syld 47 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑖 ∈ ℕ0) → ((𝑖 ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1))))) |
84 | 83 | expcom 417 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (𝐹 ∈ dom 𝑆 → ((𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑖)) → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))))) |
85 | 84 | a2d 29 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
→ ((𝐹 ∈ dom 𝑆 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘𝑖))) → (𝐹 ∈ dom 𝑆 → ((𝑖 + 1) ∈ (0..^(♯‘𝐹)) → (𝐹‘0) ∼ (𝐹‘(𝑖 + 1)))))) |
86 | 20, 25, 30, 35, 43, 85 | nn0ind 12116 |
. . . 4
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 → (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) −
1))))) |
87 | 15, 86 | mpcom 38 |
. . 3
⊢ (𝐹 ∈ dom 𝑆 → (((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))
→ (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) − 1)))) |
88 | 13, 87 | mpd 15 |
. 2
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∼ (𝐹‘((♯‘𝐹) − 1))) |
89 | 1, 2, 3, 4, 5, 6 | efgsval 18924 |
. 2
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
90 | 88, 89 | breqtrrd 5060 |
1
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∼ (𝑆‘𝐹)) |