Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1ob Structured version   Visualization version   GIF version

Theorem fcoresf1ob 47064
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1ob (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))

Proof of Theorem fcoresf1ob
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcoresf1b 47061 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
81, 2, 3, 4, 5, 6fcoresfob 47063 . . . 4 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
97, 8anbi12d 632 . . 3 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷)))
10 anass 468 . . 3 (((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
119, 10bitrdi 287 . 2 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))))
12 df-f1o 6520 . 2 ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ ((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷))
13 df-f1o 6520 . . 3 (𝑌:𝐸1-1-onto𝐷 ↔ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))
1413anbi2i 623 . 2 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
1511, 12, 143bitr4g 314 1 (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cin 3915  ccnv 5639  ran crn 5641  cres 5642  cima 5643  ccom 5644  wf 6509  1-1wf1 6510  ontowfo 6511  1-1-ontowf1o 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by:  3f1oss1  47066
  Copyright terms: Public domain W3C validator