Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1ob Structured version   Visualization version   GIF version

Theorem fcoresf1ob 47061
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1ob (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))

Proof of Theorem fcoresf1ob
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcoresf1b 47058 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
81, 2, 3, 4, 5, 6fcoresfob 47060 . . . 4 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
97, 8anbi12d 632 . . 3 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷)))
10 anass 468 . . 3 (((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
119, 10bitrdi 287 . 2 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))))
12 df-f1o 6489 . 2 ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ ((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷))
13 df-f1o 6489 . . 3 (𝑌:𝐸1-1-onto𝐷 ↔ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))
1413anbi2i 623 . 2 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
1511, 12, 143bitr4g 314 1 (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cin 3902  ccnv 5618  ran crn 5620  cres 5621  cima 5622  ccom 5623  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  3f1oss1  47063
  Copyright terms: Public domain W3C validator