Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1ob Structured version   Visualization version   GIF version

Theorem fcoresf1ob 46990
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1ob (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))

Proof of Theorem fcoresf1ob
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcoresf1b 46987 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
81, 2, 3, 4, 5, 6fcoresfob 46989 . . . 4 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
97, 8anbi12d 631 . . 3 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷)))
10 anass 468 . . 3 (((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
119, 10bitrdi 287 . 2 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))))
12 df-f1o 6582 . 2 ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ ((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷))
13 df-f1o 6582 . . 3 (𝑌:𝐸1-1-onto𝐷 ↔ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))
1413anbi2i 622 . 2 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
1511, 12, 143bitr4g 314 1 (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  cin 3975  ccnv 5699  ran crn 5701  cres 5702  cima 5703  ccom 5704  wf 6571  1-1wf1 6572  ontowfo 6573  1-1-ontowf1o 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583
This theorem is referenced by:  3f1oss1  46992
  Copyright terms: Public domain W3C validator