![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1ob | Structured version Visualization version GIF version |
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1ob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcoresf1b 47048 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
8 | 1, 2, 3, 4, 5, 6 | fcoresfob 47050 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷))) |
10 | anass 468 | . . 3 ⊢ (((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) | |
11 | 9, 10 | bitrdi 287 | . 2 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)))) |
12 | df-f1o 6576 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
13 | df-f1o 6576 | . . 3 ⊢ (𝑌:𝐸–1-1-onto→𝐷 ↔ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)) | |
14 | 13 | anbi2i 623 | . 2 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) |
15 | 11, 12, 14 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∩ cin 3965 ◡ccnv 5692 ran crn 5694 ↾ cres 5695 “ cima 5696 ∘ ccom 5697 ⟶wf 6565 –1-1→wf1 6566 –onto→wfo 6567 –1-1-onto→wf1o 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 |
This theorem is referenced by: 3f1oss1 47053 |
Copyright terms: Public domain | W3C validator |