Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1ob Structured version   Visualization version   GIF version

Theorem fcoresf1ob 47030
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1ob (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))

Proof of Theorem fcoresf1ob
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcoresf1b 47027 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
81, 2, 3, 4, 5, 6fcoresfob 47029 . . . 4 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
97, 8anbi12d 632 . . 3 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷)))
10 anass 468 . . 3 (((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
119, 10bitrdi 287 . 2 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))))
12 df-f1o 6534 . 2 ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ ((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷))
13 df-f1o 6534 . . 3 (𝑌:𝐸1-1-onto𝐷 ↔ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))
1413anbi2i 623 . 2 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
1511, 12, 143bitr4g 314 1 (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  cin 3923  ccnv 5650  ran crn 5652  cres 5653  cima 5654  ccom 5655  wf 6523  1-1wf1 6524  ontowfo 6525  1-1-ontowf1o 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535
This theorem is referenced by:  3f1oss1  47032
  Copyright terms: Public domain W3C validator