![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1ob | Structured version Visualization version GIF version |
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1ob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcoresf1b 46987 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
8 | 1, 2, 3, 4, 5, 6 | fcoresfob 46989 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
9 | 7, 8 | anbi12d 631 | . . 3 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷))) |
10 | anass 468 | . . 3 ⊢ (((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) | |
11 | 9, 10 | bitrdi 287 | . 2 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)))) |
12 | df-f1o 6582 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
13 | df-f1o 6582 | . . 3 ⊢ (𝑌:𝐸–1-1-onto→𝐷 ↔ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)) | |
14 | 13 | anbi2i 622 | . 2 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) |
15 | 11, 12, 14 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∩ cin 3975 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 ⟶wf 6571 –1-1→wf1 6572 –onto→wfo 6573 –1-1-onto→wf1o 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 |
This theorem is referenced by: 3f1oss1 46992 |
Copyright terms: Public domain | W3C validator |