![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1ob | Structured version Visualization version GIF version |
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1ob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcoresf1b 45766 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
8 | 1, 2, 3, 4, 5, 6 | fcoresfob 45768 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
9 | 7, 8 | anbi12d 631 | . . 3 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷))) |
10 | anass 469 | . . 3 ⊢ (((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) | |
11 | 9, 10 | bitrdi 286 | . 2 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)))) |
12 | df-f1o 6547 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
13 | df-f1o 6547 | . . 3 ⊢ (𝑌:𝐸–1-1-onto→𝐷 ↔ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)) | |
14 | 13 | anbi2i 623 | . 2 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) |
15 | 11, 12, 14 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∩ cin 3946 ◡ccnv 5674 ran crn 5676 ↾ cres 5677 “ cima 5678 ∘ ccom 5679 ⟶wf 6536 –1-1→wf1 6537 –onto→wfo 6538 –1-1-onto→wf1o 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |