Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1ob Structured version   Visualization version   GIF version

Theorem fcoresf1ob 47043
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1ob (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))

Proof of Theorem fcoresf1ob
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcoresf1b 47040 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
81, 2, 3, 4, 5, 6fcoresfob 47042 . . . 4 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
97, 8anbi12d 632 . . 3 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷)))
10 anass 468 . . 3 (((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) ∧ 𝑌:𝐸onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
119, 10bitrdi 287 . 2 (𝜑 → (((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))))
12 df-f1o 6548 . 2 ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ ((𝐺𝐹):𝑃1-1𝐷 ∧ (𝐺𝐹):𝑃onto𝐷))
13 df-f1o 6548 . . 3 (𝑌:𝐸1-1-onto𝐷 ↔ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷))
1413anbi2i 623 . 2 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷) ↔ (𝑋:𝑃1-1𝐸 ∧ (𝑌:𝐸1-1𝐷𝑌:𝐸onto𝐷)))
1511, 12, 143bitr4g 314 1 (𝜑 → ((𝐺𝐹):𝑃1-1-onto𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  cin 3930  ccnv 5664  ran crn 5666  cres 5667  cima 5668  ccom 5669  wf 6537  1-1wf1 6538  ontowfo 6539  1-1-ontowf1o 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by:  3f1oss1  47045
  Copyright terms: Public domain W3C validator