| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1ob | Structured version Visualization version GIF version | ||
| Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| Ref | Expression |
|---|---|
| fcoresf1ob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 7 | 1, 2, 3, 4, 5, 6 | fcoresf1b 47180 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
| 8 | 1, 2, 3, 4, 5, 6 | fcoresfob 47182 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷))) |
| 10 | anass 468 | . . 3 ⊢ (((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) ∧ 𝑌:𝐸–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) | |
| 11 | 9, 10 | bitrdi 287 | . 2 ⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)))) |
| 12 | df-f1o 6488 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
| 13 | df-f1o 6488 | . . 3 ⊢ (𝑌:𝐸–1-1-onto→𝐷 ↔ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷)) | |
| 14 | 13 | anbi2i 623 | . 2 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷) ↔ (𝑋:𝑃–1-1→𝐸 ∧ (𝑌:𝐸–1-1→𝐷 ∧ 𝑌:𝐸–onto→𝐷))) |
| 15 | 11, 12, 14 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∩ cin 3896 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 “ cima 5617 ∘ ccom 5618 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: 3f1oss1 47185 |
| Copyright terms: Public domain | W3C validator |