|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > focofob | Structured version Visualization version GIF version | ||
| Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 47091 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| focofob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffn 6736 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfocofob 47091 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
| 3 | 1, 2 | syl3an1 1164 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | 
| 4 | dffn4 6826 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 5 | 1, 4 | sylib 218 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) | 
| 6 | 5 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴–onto→ran 𝐹) | 
| 7 | foeq3 6818 | . . . . 5 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐶)) | |
| 8 | 7 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐶)) | 
| 9 | 6, 8 | mpbid 232 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴–onto→𝐶) | 
| 10 | 9 | biantrurd 532 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐺:𝐶–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | 
| 11 | 3, 10 | bitrd 279 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ran crn 5686 ∘ ccom 5689 Fn wfn 6556 ⟶wf 6557 –onto→wfo 6559 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |