![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > focofob | Structured version Visualization version GIF version |
Description: If the domain of a function πΊ equals the range of a function πΉ, then the composition (πΊ β πΉ) is surjective iff πΊ and πΉ as function to the domain of πΊ are both surjective. Symmetric version of fnfocofob 46086 including the fact that πΉ is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focofob | β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄βontoβπ· β (πΉ:π΄βontoβπΆ β§ πΊ:πΆβontoβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6717 | . . 3 β’ (πΉ:π΄βΆπ΅ β πΉ Fn π΄) | |
2 | fnfocofob 46086 | . . 3 β’ ((πΉ Fn π΄ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄βontoβπ· β πΊ:πΆβontoβπ·)) | |
3 | 1, 2 | syl3an1 1162 | . 2 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄βontoβπ· β πΊ:πΆβontoβπ·)) |
4 | dffn4 6811 | . . . . . 6 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) | |
5 | 1, 4 | sylib 217 | . . . . 5 β’ (πΉ:π΄βΆπ΅ β πΉ:π΄βontoβran πΉ) |
6 | 5 | 3ad2ant1 1132 | . . . 4 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β πΉ:π΄βontoβran πΉ) |
7 | foeq3 6803 | . . . . 5 β’ (ran πΉ = πΆ β (πΉ:π΄βontoβran πΉ β πΉ:π΄βontoβπΆ)) | |
8 | 7 | 3ad2ant3 1134 | . . . 4 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β (πΉ:π΄βontoβran πΉ β πΉ:π΄βontoβπΆ)) |
9 | 6, 8 | mpbid 231 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β πΉ:π΄βontoβπΆ) |
10 | 9 | biantrurd 532 | . 2 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β (πΊ:πΆβontoβπ· β (πΉ:π΄βontoβπΆ β§ πΊ:πΆβontoβπ·))) |
11 | 3, 10 | bitrd 279 | 1 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄βontoβπ· β (πΉ:π΄βontoβπΆ β§ πΊ:πΆβontoβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 ran crn 5677 β ccom 5680 Fn wfn 6538 βΆwf 6539 βontoβwfo 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |