Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  focofob Structured version   Visualization version   GIF version

Theorem focofob 46995
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 46994 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.)
Assertion
Ref Expression
focofob ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷 ↔ (𝐹:𝐴onto𝐶𝐺:𝐶onto𝐷)))

Proof of Theorem focofob
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnfocofob 46994 . . 3 ((𝐹 Fn 𝐴𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
31, 2syl3an1 1163 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
4 dffn4 6840 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
51, 4sylib 218 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
653ad2ant1 1133 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴onto→ran 𝐹)
7 foeq3 6832 . . . . 5 (ran 𝐹 = 𝐶 → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐶))
873ad2ant3 1135 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐶))
96, 8mpbid 232 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴onto𝐶)
109biantrurd 532 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐺:𝐶onto𝐷 ↔ (𝐹:𝐴onto𝐶𝐺:𝐶onto𝐷)))
113, 10bitrd 279 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷 ↔ (𝐹:𝐴onto𝐶𝐺:𝐶onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator