Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  focofob Structured version   Visualization version   GIF version

Theorem focofob 46087
Description: If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 46086 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.)
Assertion
Ref Expression
focofob ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐢 ∧ 𝐺:𝐢–onto→𝐷)))

Proof of Theorem focofob
StepHypRef Expression
1 ffn 6717 . . 3 (𝐹:𝐴⟢𝐡 β†’ 𝐹 Fn 𝐴)
2 fnfocofob 46086 . . 3 ((𝐹 Fn 𝐴 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐢–onto→𝐷))
31, 2syl3an1 1162 . 2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐢–onto→𝐷))
4 dffn4 6811 . . . . . 6 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
51, 4sylib 217 . . . . 5 (𝐹:𝐴⟢𝐡 β†’ 𝐹:𝐴–ontoβ†’ran 𝐹)
653ad2ant1 1132 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ 𝐹:𝐴–ontoβ†’ran 𝐹)
7 foeq3 6803 . . . . 5 (ran 𝐹 = 𝐢 β†’ (𝐹:𝐴–ontoβ†’ran 𝐹 ↔ 𝐹:𝐴–onto→𝐢))
873ad2ant3 1134 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (𝐹:𝐴–ontoβ†’ran 𝐹 ↔ 𝐹:𝐴–onto→𝐢))
96, 8mpbid 231 . . 3 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ 𝐹:𝐴–onto→𝐢)
109biantrurd 532 . 2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (𝐺:𝐢–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐢 ∧ 𝐺:𝐢–onto→𝐷)))
113, 10bitrd 279 1 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐢 ∧ 𝐺:𝐢–onto→𝐷)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540  ran crn 5677   ∘ ccom 5680   Fn wfn 6538  βŸΆwf 6539  β€“ontoβ†’wfo 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator