Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocpbllem | Structured version Visualization version GIF version |
Description: Lemma for f1ocpbl 17153. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
f1ocpbl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) |
Ref | Expression |
---|---|
f1ocpbllem | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocpbl.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) | |
2 | f1of1 6699 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝑋 → 𝐹:𝑉–1-1→𝑋) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–1-1→𝑋) |
4 | 3 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐹:𝑉–1-1→𝑋) |
5 | simp2l 1197 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
6 | simp3l 1199 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
7 | f1fveq 7116 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝑋 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐴 = 𝐶)) | |
8 | 4, 5, 6, 7 | syl12anc 833 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐴 = 𝐶)) |
9 | simp2r 1198 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
10 | simp3r 1200 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) | |
11 | f1fveq 7116 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝑋 ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐷) ↔ 𝐵 = 𝐷)) | |
12 | 4, 9, 10, 11 | syl12anc 833 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐷) ↔ 𝐵 = 𝐷)) |
13 | 8, 12 | anbi12d 630 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1ocpbl 17153 f1olecpbl 17155 |
Copyright terms: Public domain | W3C validator |