| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7231 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6858 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6508 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 |
| This theorem is referenced by: f1elima 7238 f1dom3fv3dif 7243 cocan1 7266 isof1oidb 7299 isosolem 7322 f1oiso 7326 weniso 7329 f1oweALT 7951 2dom 9001 xpdom2 9036 wemapwe 9650 fseqenlem1 9977 dfac12lem2 10098 infpssrlem4 10259 fin23lem28 10293 isf32lem7 10312 iundom2g 10493 canthnumlem 10601 canthwelem 10603 canthp1lem2 10606 pwfseqlem4 10615 seqf1olem1 14006 bitsinv2 16413 bitsf1 16416 sadasslem 16440 sadeq 16442 bitsuz 16444 eulerthlem2 16752 f1ocpbllem 17487 f1ovscpbl 17489 fthi 17882 f1omvdmvd 19373 odf1 19492 dprdf1o 19964 zntoslem 21466 iporthcom 21544 ply1scln0 22178 cnt0 23233 cnhaus 23241 imasdsf1olem 24261 imasf1oxmet 24263 dyadmbl 25501 vitalilem3 25511 dvcnvlem 25880 facth1 26072 usgredg2v 29154 mndlactf1o 32971 mndractf1o 32972 cycpmco2lem6 33088 erdszelem9 35186 cvmliftmolem1 35268 msubff1 35543 metf1o 37749 rngoisocnv 37975 laut11 40080 aks6d1c6lem3 42160 gicabl 43088 permac8prim 45004 fourierdlem50 46154 isuspgrim0lem 47893 uptrlem1 49199 |
| Copyright terms: Public domain | W3C validator |