![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 7294 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6920 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 –1-1→wf1 6570 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fv 6581 |
This theorem is referenced by: f1elima 7300 f1dom3fv3dif 7305 cocan1 7327 isof1oidb 7360 isosolem 7383 f1oiso 7387 weniso 7390 f1oweALT 8013 2dom 9095 xpdom2 9133 wemapwe 9766 fseqenlem1 10093 dfac12lem2 10214 infpssrlem4 10375 fin23lem28 10409 isf32lem7 10428 iundom2g 10609 canthnumlem 10717 canthwelem 10719 canthp1lem2 10722 pwfseqlem4 10731 seqf1olem1 14092 bitsinv2 16489 bitsf1 16492 sadasslem 16516 sadeq 16518 bitsuz 16520 eulerthlem2 16829 f1ocpbllem 17584 f1ovscpbl 17586 fthi 17985 f1omvdmvd 19485 odf1 19604 dprdf1o 20076 zntoslem 21598 iporthcom 21676 ply1scln0 22316 cnt0 23375 cnhaus 23383 imasdsf1olem 24404 imasf1oxmet 24406 dyadmbl 25654 vitalilem3 25664 dvcnvlem 26034 facth1 26226 usgredg2v 29262 mndlactf1o 33016 mndractf1o 33017 cycpmco2lem6 33124 erdszelem9 35167 cvmliftmolem1 35249 msubff1 35524 metf1o 37715 rngoisocnv 37941 laut11 40043 aks6d1c6lem3 42129 gicabl 43056 fourierdlem50 46077 isuspgrim0lem 47755 |
Copyright terms: Public domain | W3C validator |