![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 7276 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6906 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 –1-1→wf1 6559 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fv 6570 |
This theorem is referenced by: f1elima 7282 f1dom3fv3dif 7287 cocan1 7310 isof1oidb 7343 isosolem 7366 f1oiso 7370 weniso 7373 f1oweALT 7995 2dom 9068 xpdom2 9105 wemapwe 9734 fseqenlem1 10061 dfac12lem2 10182 infpssrlem4 10343 fin23lem28 10377 isf32lem7 10396 iundom2g 10577 canthnumlem 10685 canthwelem 10687 canthp1lem2 10690 pwfseqlem4 10699 seqf1olem1 14078 bitsinv2 16476 bitsf1 16479 sadasslem 16503 sadeq 16505 bitsuz 16507 eulerthlem2 16815 f1ocpbllem 17570 f1ovscpbl 17572 fthi 17971 f1omvdmvd 19475 odf1 19594 dprdf1o 20066 zntoslem 21592 iporthcom 21670 ply1scln0 22310 cnt0 23369 cnhaus 23377 imasdsf1olem 24398 imasf1oxmet 24400 dyadmbl 25648 vitalilem3 25658 dvcnvlem 26028 facth1 26220 usgredg2v 29258 mndlactf1o 33017 mndractf1o 33018 cycpmco2lem6 33133 erdszelem9 35183 cvmliftmolem1 35265 msubff1 35540 metf1o 37741 rngoisocnv 37967 laut11 40068 aks6d1c6lem3 42153 gicabl 43087 fourierdlem50 46111 isuspgrim0lem 47808 |
Copyright terms: Public domain | W3C validator |