| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7190 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6822 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 –1-1→wf1 6478 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 |
| This theorem is referenced by: f1elima 7197 f1dom3fv3dif 7202 cocan1 7225 isof1oidb 7258 isosolem 7281 f1oiso 7285 weniso 7288 f1oweALT 7904 2dom 8952 xpdom2 8985 wemapwe 9587 fseqenlem1 9915 dfac12lem2 10036 infpssrlem4 10197 fin23lem28 10231 isf32lem7 10250 iundom2g 10431 canthnumlem 10539 canthwelem 10541 canthp1lem2 10544 pwfseqlem4 10553 seqf1olem1 13948 bitsinv2 16354 bitsf1 16357 sadasslem 16381 sadeq 16383 bitsuz 16385 eulerthlem2 16693 f1ocpbllem 17428 f1ovscpbl 17430 fthi 17827 f1omvdmvd 19355 odf1 19474 dprdf1o 19946 zntoslem 21493 iporthcom 21572 ply1scln0 22206 cnt0 23261 cnhaus 23269 imasdsf1olem 24288 imasf1oxmet 24290 dyadmbl 25528 vitalilem3 25538 dvcnvlem 25907 facth1 26099 usgredg2v 29205 mndlactf1o 33011 mndractf1o 33012 cycpmco2lem6 33100 erdszelem9 35243 cvmliftmolem1 35325 msubff1 35600 metf1o 37803 rngoisocnv 38029 laut11 40133 aks6d1c6lem3 42213 gicabl 43140 permac8prim 45055 fourierdlem50 46202 isuspgrim0lem 47932 uptrlem1 49250 |
| Copyright terms: Public domain | W3C validator |