| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7234 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6861 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6511 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 |
| This theorem is referenced by: f1elima 7241 f1dom3fv3dif 7246 cocan1 7269 isof1oidb 7302 isosolem 7325 f1oiso 7329 weniso 7332 f1oweALT 7954 2dom 9004 xpdom2 9041 wemapwe 9657 fseqenlem1 9984 dfac12lem2 10105 infpssrlem4 10266 fin23lem28 10300 isf32lem7 10319 iundom2g 10500 canthnumlem 10608 canthwelem 10610 canthp1lem2 10613 pwfseqlem4 10622 seqf1olem1 14013 bitsinv2 16420 bitsf1 16423 sadasslem 16447 sadeq 16449 bitsuz 16451 eulerthlem2 16759 f1ocpbllem 17494 f1ovscpbl 17496 fthi 17889 f1omvdmvd 19380 odf1 19499 dprdf1o 19971 zntoslem 21473 iporthcom 21551 ply1scln0 22185 cnt0 23240 cnhaus 23248 imasdsf1olem 24268 imasf1oxmet 24270 dyadmbl 25508 vitalilem3 25518 dvcnvlem 25887 facth1 26079 usgredg2v 29161 mndlactf1o 32978 mndractf1o 32979 cycpmco2lem6 33095 erdszelem9 35193 cvmliftmolem1 35275 msubff1 35550 metf1o 37756 rngoisocnv 37982 laut11 40087 aks6d1c6lem3 42167 gicabl 43095 permac8prim 45011 fourierdlem50 46161 isuspgrim0lem 47897 uptrlem1 49203 |
| Copyright terms: Public domain | W3C validator |