Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 7039 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6687 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 228 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 –1-1→wf1 6347 ‘cfv 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fv 6358 |
This theorem is referenced by: f1elima 7045 f1dom3fv3dif 7050 cocan1 7071 isof1oidb 7103 isosolem 7126 f1oiso 7130 weniso 7133 f1oweALT 7711 2dom 8642 xpdom2 8674 wemapwe 9246 fseqenlem1 9537 dfac12lem2 9657 infpssrlem4 9819 fin23lem28 9853 isf32lem7 9872 iundom2g 10053 canthnumlem 10161 canthwelem 10163 canthp1lem2 10166 pwfseqlem4 10175 seqf1olem1 13514 bitsinv2 15899 bitsf1 15902 sadasslem 15926 sadeq 15928 bitsuz 15930 eulerthlem2 16232 f1ocpbllem 16913 f1ovscpbl 16915 fthi 17306 ghmf1 18518 f1omvdmvd 18702 odf1 18820 dprdf1o 19286 zntoslem 20388 iporthcom 20464 ply1scln0 21079 cnt0 22110 cnhaus 22118 imasdsf1olem 23139 imasf1oxmet 23141 dyadmbl 24365 vitalilem3 24375 dvcnvlem 24741 facth1 24930 usgredg2v 27182 cycpmco2lem6 30988 erdszelem9 32745 cvmliftmolem1 32827 msubff1 33102 metf1o 35569 rngoisocnv 35795 laut11 37756 gicabl 40537 fourierdlem50 43280 |
Copyright terms: Public domain | W3C validator |