| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7213 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6840 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6496 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 |
| This theorem is referenced by: f1elima 7220 f1dom3fv3dif 7225 cocan1 7248 isof1oidb 7281 isosolem 7304 f1oiso 7308 weniso 7311 f1oweALT 7930 2dom 8978 xpdom2 9013 wemapwe 9626 fseqenlem1 9953 dfac12lem2 10074 infpssrlem4 10235 fin23lem28 10269 isf32lem7 10288 iundom2g 10469 canthnumlem 10577 canthwelem 10579 canthp1lem2 10582 pwfseqlem4 10591 seqf1olem1 13982 bitsinv2 16389 bitsf1 16392 sadasslem 16416 sadeq 16418 bitsuz 16420 eulerthlem2 16728 f1ocpbllem 17463 f1ovscpbl 17465 fthi 17858 f1omvdmvd 19349 odf1 19468 dprdf1o 19940 zntoslem 21442 iporthcom 21520 ply1scln0 22154 cnt0 23209 cnhaus 23217 imasdsf1olem 24237 imasf1oxmet 24239 dyadmbl 25477 vitalilem3 25487 dvcnvlem 25856 facth1 26048 usgredg2v 29130 mndlactf1o 32944 mndractf1o 32945 cycpmco2lem6 33061 erdszelem9 35159 cvmliftmolem1 35241 msubff1 35516 metf1o 37722 rngoisocnv 37948 laut11 40053 aks6d1c6lem3 42133 gicabl 43061 permac8prim 44977 fourierdlem50 46127 isuspgrim0lem 47866 uptrlem1 49172 |
| Copyright terms: Public domain | W3C validator |