Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 7124 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6768 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 224 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 –1-1→wf1 6427 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fv 6438 |
This theorem is referenced by: f1elima 7130 f1dom3fv3dif 7135 cocan1 7156 isof1oidb 7188 isosolem 7211 f1oiso 7215 weniso 7218 f1oweALT 7801 2dom 8790 xpdom2 8823 wemapwe 9416 fseqenlem1 9764 dfac12lem2 9884 infpssrlem4 10046 fin23lem28 10080 isf32lem7 10099 iundom2g 10280 canthnumlem 10388 canthwelem 10390 canthp1lem2 10393 pwfseqlem4 10402 seqf1olem1 13743 bitsinv2 16131 bitsf1 16134 sadasslem 16158 sadeq 16160 bitsuz 16162 eulerthlem2 16464 f1ocpbllem 17216 f1ovscpbl 17218 fthi 17615 ghmf1 18844 f1omvdmvd 19032 odf1 19150 dprdf1o 19616 zntoslem 20745 iporthcom 20821 ply1scln0 21443 cnt0 22478 cnhaus 22486 imasdsf1olem 23507 imasf1oxmet 23509 dyadmbl 24745 vitalilem3 24755 dvcnvlem 25121 facth1 25310 usgredg2v 27575 cycpmco2lem6 31377 erdszelem9 33140 cvmliftmolem1 33222 msubff1 33497 metf1o 35892 rngoisocnv 36118 laut11 38079 gicabl 40904 fourierdlem50 43651 |
Copyright terms: Public domain | W3C validator |