| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7193 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6822 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6479 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fv 6490 |
| This theorem is referenced by: f1elima 7200 f1dom3fv3dif 7205 cocan1 7228 isof1oidb 7261 isosolem 7284 f1oiso 7288 weniso 7291 f1oweALT 7907 2dom 8955 xpdom2 8989 wemapwe 9593 fseqenlem1 9918 dfac12lem2 10039 infpssrlem4 10200 fin23lem28 10234 isf32lem7 10253 iundom2g 10434 canthnumlem 10542 canthwelem 10544 canthp1lem2 10547 pwfseqlem4 10556 seqf1olem1 13948 bitsinv2 16354 bitsf1 16357 sadasslem 16381 sadeq 16383 bitsuz 16385 eulerthlem2 16693 f1ocpbllem 17428 f1ovscpbl 17430 fthi 17827 f1omvdmvd 19322 odf1 19441 dprdf1o 19913 zntoslem 21463 iporthcom 21542 ply1scln0 22176 cnt0 23231 cnhaus 23239 imasdsf1olem 24259 imasf1oxmet 24261 dyadmbl 25499 vitalilem3 25509 dvcnvlem 25878 facth1 26070 usgredg2v 29172 mndlactf1o 32984 mndractf1o 32985 cycpmco2lem6 33073 erdszelem9 35172 cvmliftmolem1 35254 msubff1 35529 metf1o 37735 rngoisocnv 37961 laut11 40065 aks6d1c6lem3 42145 gicabl 43072 permac8prim 44988 fourierdlem50 46137 isuspgrim0lem 47877 uptrlem1 49195 |
| Copyright terms: Public domain | W3C validator |