| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 7248 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 2 | fveq2 6875 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 –1-1→wf1 6527 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fv 6538 |
| This theorem is referenced by: f1elima 7255 f1dom3fv3dif 7260 cocan1 7283 isof1oidb 7316 isosolem 7339 f1oiso 7343 weniso 7346 f1oweALT 7969 2dom 9042 xpdom2 9079 wemapwe 9709 fseqenlem1 10036 dfac12lem2 10157 infpssrlem4 10318 fin23lem28 10352 isf32lem7 10371 iundom2g 10552 canthnumlem 10660 canthwelem 10662 canthp1lem2 10665 pwfseqlem4 10674 seqf1olem1 14057 bitsinv2 16460 bitsf1 16463 sadasslem 16487 sadeq 16489 bitsuz 16491 eulerthlem2 16799 f1ocpbllem 17536 f1ovscpbl 17538 fthi 17931 f1omvdmvd 19422 odf1 19541 dprdf1o 20013 zntoslem 21515 iporthcom 21593 ply1scln0 22227 cnt0 23282 cnhaus 23290 imasdsf1olem 24310 imasf1oxmet 24312 dyadmbl 25551 vitalilem3 25561 dvcnvlem 25930 facth1 26122 usgredg2v 29152 mndlactf1o 32971 mndractf1o 32972 cycpmco2lem6 33088 erdszelem9 35167 cvmliftmolem1 35249 msubff1 35524 metf1o 37725 rngoisocnv 37951 laut11 40051 aks6d1c6lem3 42131 gicabl 43070 fourierdlem50 46133 isuspgrim0lem 47854 |
| Copyright terms: Public domain | W3C validator |