![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocpbl | Structured version Visualization version GIF version |
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
f1ocpbl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) |
Ref | Expression |
---|---|
f1ocpbl | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocpbl.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) | |
2 | 1 | f1ocpbllem 17470 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
3 | oveq12 7418 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
4 | 3 | fveq2d 6896 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))) |
5 | 2, 4 | syl6bi 253 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-f1o 6551 df-fv 6552 df-ov 7412 |
This theorem is referenced by: xpsadd 17520 xpsmul 17521 imasmndf1 18664 imasgrpf1 18940 imasringf1 20144 imasgim 41842 imasrngf1 46679 |
Copyright terms: Public domain | W3C validator |