| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocpbl | Structured version Visualization version GIF version | ||
| Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1ocpbl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) |
| Ref | Expression |
|---|---|
| f1ocpbl | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocpbl.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) | |
| 2 | 1 | f1ocpbllem 17428 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 3 | oveq12 7355 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 4 | 3 | fveq2d 6826 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))) |
| 5 | 2, 4 | biimtrdi 253 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: xpsadd 17478 xpsmul 17479 imasmndf1 18684 imasgrpf1 18970 imasrngf1 20097 imasringf1 20250 imasgim 43139 |
| Copyright terms: Public domain | W3C validator |