MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiOLD Structured version   Visualization version   GIF version

Theorem f1oiOLD 6810
Description: Obsolete version of f1oi 6809 as of 10-Feb-2026. (Contributed by NM, 30-Apr-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
f1oiOLD ( I ↾ 𝐴):𝐴1-1-onto𝐴

Proof of Theorem f1oiOLD
StepHypRef Expression
1 fnresi 6618 . 2 ( I ↾ 𝐴) Fn 𝐴
2 cnvresid 6568 . . . 4 ( I ↾ 𝐴) = ( I ↾ 𝐴)
32fneq1i 6586 . . 3 (( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴)
41, 3mpbir 231 . 2 ( I ↾ 𝐴) Fn 𝐴
5 dff1o4 6779 . 2 (( I ↾ 𝐴):𝐴1-1-onto𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴( I ↾ 𝐴) Fn 𝐴))
61, 4, 5mpbir2an 711 1 ( I ↾ 𝐴):𝐴1-1-onto𝐴
Colors of variables: wff setvar class
Syntax hints:   I cid 5515  ccnv 5620  cres 5623   Fn wfn 6484  1-1-ontowf1o 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator