Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6545 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6497 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6514 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6708 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 707 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5479 ◡ccnv 5579 ↾ cres 5582 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1ovi 6738 fveqf1o 7155 f1ofvswap 7158 isoid 7180 enrefg 8727 ssdomg 8741 enreffi 8929 ssdomfi 8940 wdomref 9261 infxpenc 9705 pwfseqlem5 10350 fproddvdsd 15972 wunndx 16824 idfucl 17512 idffth 17565 ressffth 17570 setccatid 17715 estrccatid 17764 funcestrcsetclem7 17779 funcestrcsetclem8 17780 equivestrcsetc 17785 funcsetcestrclem7 17794 funcsetcestrclem8 17795 idmhm 18354 ielefmnd 18441 sursubmefmnd 18450 injsubmefmnd 18451 idghm 18764 idresperm 18908 islinds2 20930 lindfres 20940 lindsmm 20945 mdetunilem9 21677 ssidcn 22314 resthauslem 22422 sshauslem 22431 idqtop 22765 fmid 23019 iducn 23343 mbfid 24704 dvid 24987 dvexp 25022 wilthlem2 26123 wilthlem3 26124 idmot 26802 ausgrusgrb 27438 upgrres1 27583 umgrres1 27584 usgrres1 27585 usgrexilem 27710 sizusglecusglem1 27731 pliguhgr 28749 hoif 30017 idunop 30241 idcnop 30244 elunop2 30276 fcobijfs 30960 symgcom 31254 pmtridf1o 31263 cycpmfvlem 31281 cycpmfv3 31284 cycpmcl 31285 islinds5 31465 ellspds 31466 qqhre 31870 rrhre 31871 subfacp1lem4 33045 subfacp1lem5 33046 poimirlem15 35719 poimirlem22 35726 idlaut 38037 tendoidcl 38710 tendo0co2 38729 erng1r 38936 dvalveclem 38966 dva0g 38968 dvh0g 39052 mzpresrename 40488 eldioph2lem1 40498 eldioph2lem2 40499 diophren 40551 kelac2 40806 lnrfg 40860 fundcmpsurbijinjpreimafv 44747 fundcmpsurinjimaid 44751 isomgreqve 45165 ushrisomgr 45181 uspgrsprfo 45198 idmgmhm 45230 funcringcsetcALTV2lem8 45489 funcringcsetclem8ALTV 45512 itcovalendof 45903 |
Copyright terms: Public domain | W3C validator |