![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6680 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6628 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6647 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6842 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 707 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5574 ◡ccnv 5676 ↾ cres 5679 Fn wfn 6539 –1-1-onto→wf1o 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 |
This theorem is referenced by: f1ovi 6873 fveqf1o 7305 f1ofvswap 7308 isoid 7330 enrefg 8984 ssdomg 9000 enreffi 9190 ssdomfi 9203 ssdomfi2 9204 wdomref 9571 infxpenc 10017 pwfseqlem5 10662 fproddvdsd 16284 wunndx 17134 idfucl 17837 idffth 17890 ressffth 17895 setccatid 18040 estrccatid 18089 funcestrcsetclem7 18104 funcestrcsetclem8 18105 equivestrcsetc 18110 funcsetcestrclem7 18119 funcsetcestrclem8 18120 idmgmhm 18628 idmhm 18719 ielefmnd 18806 sursubmefmnd 18815 injsubmefmnd 18816 idghm 19147 idresperm 19296 islinds2 21589 lindfres 21599 lindsmm 21604 mdetunilem9 22344 ssidcn 22981 resthauslem 23089 sshauslem 23098 idqtop 23432 fmid 23686 iducn 24010 mbfid 25386 dvid 25669 dvexp 25704 wilthlem2 26807 wilthlem3 26808 idmot 28053 ausgrusgrb 28690 upgrres1 28835 umgrres1 28836 usgrres1 28837 usgrexilem 28962 sizusglecusglem1 28983 pliguhgr 30004 hoif 31272 idunop 31496 idcnop 31499 elunop2 31531 fcobijfs 32213 symgcom 32512 pmtridf1o 32521 cycpmfvlem 32539 cycpmfv3 32542 cycpmcl 32543 islinds5 32752 ellspds 32753 qqhre 33296 rrhre 33297 subfacp1lem4 34470 subfacp1lem5 34471 poimirlem15 36808 poimirlem22 36815 idlaut 39272 tendoidcl 39945 tendo0co2 39964 erng1r 40171 dvalveclem 40201 dva0g 40203 dvh0g 40287 mzpresrename 41792 eldioph2lem1 41802 eldioph2lem2 41803 diophren 41855 kelac2 42111 lnrfg 42165 fundcmpsurbijinjpreimafv 46375 fundcmpsurinjimaid 46379 isomgreqve 46793 ushrisomgr 46809 uspgrsprfo 46826 funcringcsetcALTV2lem8 47031 funcringcsetclem8ALTV 47054 itcovalendof 47444 |
Copyright terms: Public domain | W3C validator |