Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6561 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6513 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6530 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6724 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 708 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5488 ◡ccnv 5588 ↾ cres 5591 Fn wfn 6428 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1ovi 6755 fveqf1o 7175 f1ofvswap 7178 isoid 7200 enrefg 8772 ssdomg 8786 enreffi 8969 ssdomfi 8982 ssdomfi2 8983 wdomref 9331 infxpenc 9774 pwfseqlem5 10419 fproddvdsd 16044 wunndx 16896 idfucl 17596 idffth 17649 ressffth 17654 setccatid 17799 estrccatid 17848 funcestrcsetclem7 17863 funcestrcsetclem8 17864 equivestrcsetc 17869 funcsetcestrclem7 17878 funcsetcestrclem8 17879 idmhm 18439 ielefmnd 18526 sursubmefmnd 18535 injsubmefmnd 18536 idghm 18849 idresperm 18993 islinds2 21020 lindfres 21030 lindsmm 21035 mdetunilem9 21769 ssidcn 22406 resthauslem 22514 sshauslem 22523 idqtop 22857 fmid 23111 iducn 23435 mbfid 24799 dvid 25082 dvexp 25117 wilthlem2 26218 wilthlem3 26219 idmot 26898 ausgrusgrb 27535 upgrres1 27680 umgrres1 27681 usgrres1 27682 usgrexilem 27807 sizusglecusglem1 27828 pliguhgr 28848 hoif 30116 idunop 30340 idcnop 30343 elunop2 30375 fcobijfs 31058 symgcom 31352 pmtridf1o 31361 cycpmfvlem 31379 cycpmfv3 31382 cycpmcl 31383 islinds5 31563 ellspds 31564 qqhre 31970 rrhre 31971 subfacp1lem4 33145 subfacp1lem5 33146 poimirlem15 35792 poimirlem22 35799 idlaut 38110 tendoidcl 38783 tendo0co2 38802 erng1r 39009 dvalveclem 39039 dva0g 39041 dvh0g 39125 mzpresrename 40572 eldioph2lem1 40582 eldioph2lem2 40583 diophren 40635 kelac2 40890 lnrfg 40944 fundcmpsurbijinjpreimafv 44859 fundcmpsurinjimaid 44863 isomgreqve 45277 ushrisomgr 45293 uspgrsprfo 45310 idmgmhm 45342 funcringcsetcALTV2lem8 45601 funcringcsetclem8ALTV 45624 itcovalendof 46015 |
Copyright terms: Public domain | W3C validator |