![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6709 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6657 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6676 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6870 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 710 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5592 ◡ccnv 5699 ↾ cres 5702 Fn wfn 6568 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1ovi 6901 fveqf1o 7338 f1ofvswap 7342 isoid 7365 enrefg 9044 ssdomg 9060 enreffi 9249 ssdomfi 9262 ssdomfi2 9263 wdomref 9641 infxpenc 10087 pwfseqlem5 10732 fproddvdsd 16383 wunndx 17242 idfucl 17945 idffth 18000 ressffth 18005 setccatid 18151 estrccatid 18200 funcestrcsetclem7 18215 funcestrcsetclem8 18216 equivestrcsetc 18221 funcsetcestrclem7 18230 funcsetcestrclem8 18231 idmgmhm 18739 idmhm 18830 ielefmnd 18922 sursubmefmnd 18931 injsubmefmnd 18932 idghm 19271 idresperm 19427 islinds2 21856 lindfres 21866 lindsmm 21871 mdetunilem9 22647 ssidcn 23284 resthauslem 23392 sshauslem 23401 idqtop 23735 fmid 23989 iducn 24313 mbfid 25689 dvid 25973 dvexp 26011 wilthlem2 27130 wilthlem3 27131 idmot 28563 ausgrusgrb 29200 upgrres1 29348 umgrres1 29349 usgrres1 29350 usgrexilem 29475 sizusglecusglem1 29497 pliguhgr 30518 hoif 31786 idunop 32010 idcnop 32013 elunop2 32045 fcobijfs 32737 symgcom 33076 fzo0pmtrlast 33085 pmtridf1o 33087 cycpmfvlem 33105 cycpmfv3 33108 cycpmcl 33109 islinds5 33360 ellspds 33361 qqhre 33966 rrhre 33967 subfacp1lem4 35151 subfacp1lem5 35152 poimirlem15 37595 poimirlem22 37602 idlaut 40053 tendoidcl 40726 tendo0co2 40745 erng1r 40952 dvalveclem 40982 dva0g 40984 dvh0g 41068 mzpresrename 42706 eldioph2lem1 42716 eldioph2lem2 42717 diophren 42769 kelac2 43022 lnrfg 43076 fundcmpsurbijinjpreimafv 47281 fundcmpsurinjimaid 47285 grimidvtxedg 47760 ushggricedg 47780 grlicref 47829 uspgrsprfo 47871 funcringcsetcALTV2lem8 48020 funcringcsetclem8ALTV 48043 itcovalendof 48403 |
Copyright terms: Public domain | W3C validator |