![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6697 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6646 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6665 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6856 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5581 ◡ccnv 5687 ↾ cres 5690 Fn wfn 6557 –1-1-onto→wf1o 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 |
This theorem is referenced by: f1ovi 6887 fveqf1o 7321 f1ofvswap 7325 isoid 7348 enrefg 9022 ssdomg 9038 enreffi 9220 ssdomfi 9233 ssdomfi2 9234 wdomref 9609 infxpenc 10055 pwfseqlem5 10700 fproddvdsd 16368 wunndx 17228 idfucl 17931 idffth 17986 ressffth 17991 setccatid 18137 estrccatid 18186 funcestrcsetclem7 18201 funcestrcsetclem8 18202 equivestrcsetc 18207 funcsetcestrclem7 18216 funcsetcestrclem8 18217 idmgmhm 18726 idmhm 18820 ielefmnd 18912 sursubmefmnd 18921 injsubmefmnd 18922 idghm 19261 idresperm 19417 islinds2 21850 lindfres 21860 lindsmm 21865 mdetunilem9 22641 ssidcn 23278 resthauslem 23386 sshauslem 23395 idqtop 23729 fmid 23983 iducn 24307 mbfid 25683 dvid 25967 dvexp 26005 wilthlem2 27126 wilthlem3 27127 idmot 28559 ausgrusgrb 29196 upgrres1 29344 umgrres1 29345 usgrres1 29346 usgrexilem 29471 sizusglecusglem1 29493 pliguhgr 30514 hoif 31782 idunop 32006 idcnop 32009 elunop2 32041 fcobijfs 32740 symgcom 33085 fzo0pmtrlast 33094 pmtridf1o 33096 cycpmfvlem 33114 cycpmfv3 33117 cycpmcl 33118 islinds5 33374 ellspds 33375 qqhre 33982 rrhre 33983 subfacp1lem4 35167 subfacp1lem5 35168 poimirlem15 37621 poimirlem22 37628 idlaut 40078 tendoidcl 40751 tendo0co2 40770 erng1r 40977 dvalveclem 41007 dva0g 41009 dvh0g 41093 mzpresrename 42737 eldioph2lem1 42747 eldioph2lem2 42748 diophren 42800 kelac2 43053 lnrfg 43107 fundcmpsurbijinjpreimafv 47331 fundcmpsurinjimaid 47335 grimidvtxedg 47813 ushggricedg 47833 stgrusgra 47861 grlicref 47907 gpgusgra 47946 uspgrsprfo 47991 funcringcsetcALTV2lem8 48140 funcringcsetclem8ALTV 48163 itcovalendof 48518 oduoppcciso 48881 |
Copyright terms: Public domain | W3C validator |