| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6615 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | cnvresid 6565 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 3 | 2 | fneq1i 6583 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
| 5 | dff1o4 6776 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
| 6 | 1, 4, 5 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5517 ◡ccnv 5622 ↾ cres 5625 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: f1ovi 6807 fveqf1o 7243 f1ofvswap 7247 isoid 7270 enrefg 8916 ssdomg 8932 enreffi 9107 ssdomfi 9120 ssdomfi2 9121 wdomref 9483 infxpenc 9931 pwfseqlem5 10576 fproddvdsd 16264 wunndx 17124 idfucl 17806 idffth 17860 ressffth 17865 setccatid 18009 estrccatid 18056 funcestrcsetclem7 18070 funcestrcsetclem8 18071 equivestrcsetc 18076 funcsetcestrclem7 18085 funcsetcestrclem8 18086 idmgmhm 18593 idmhm 18687 ielefmnd 18779 sursubmefmnd 18788 injsubmefmnd 18789 idghm 19128 idresperm 19283 islinds2 21738 lindfres 21748 lindsmm 21753 mdetunilem9 22523 ssidcn 23158 resthauslem 23266 sshauslem 23275 idqtop 23609 fmid 23863 iducn 24186 mbfid 25552 dvid 25835 dvexp 25873 wilthlem2 26995 wilthlem3 26996 idmot 28500 ausgrusgrb 29128 upgrres1 29276 umgrres1 29277 usgrres1 29278 usgrexilem 29403 sizusglecusglem1 29425 pliguhgr 30448 hoif 31716 idunop 31940 idcnop 31943 elunop2 31975 fcobijfs 32679 symgcom 33038 fzo0pmtrlast 33047 pmtridf1o 33049 cycpmfvlem 33067 cycpmfv3 33070 cycpmcl 33071 islinds5 33317 ellspds 33318 qqhre 33989 rrhre 33990 subfacp1lem4 35158 subfacp1lem5 35159 poimirlem15 37617 poimirlem22 37624 idlaut 40078 tendoidcl 40751 tendo0co2 40770 erng1r 40977 dvalveclem 41007 dva0g 41009 dvh0g 41093 mzpresrename 42726 eldioph2lem1 42736 eldioph2lem2 42737 diophren 42789 kelac2 43041 lnrfg 43095 fundcmpsurbijinjpreimafv 47395 fundcmpsurinjimaid 47399 grimidvtxedg 47873 ushggricedg 47915 stgrusgra 47947 grlicref 48000 gpgusgra 48045 gpg5grlim 48081 uspgrsprfo 48136 funcringcsetcALTV2lem8 48285 funcringcsetclem8ALTV 48308 itcovalendof 48658 tposidf1o 48875 idfu1stf1o 49088 imaidfu 49099 idfth 49147 idsubc 49149 fucoppc 49399 oduoppcciso 49555 |
| Copyright terms: Public domain | W3C validator |