Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version |
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6563 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | cnvresid 6515 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
3 | 2 | fneq1i 6532 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
4 | 1, 3 | mpbir 230 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
5 | dff1o4 6726 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
6 | 1, 4, 5 | mpbir2an 708 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: I cid 5490 ◡ccnv 5590 ↾ cres 5593 Fn wfn 6430 –1-1-onto→wf1o 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5077 df-opab 5139 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 |
This theorem is referenced by: f1ovi 6757 fveqf1o 7177 f1ofvswap 7180 isoid 7202 enrefg 8770 ssdomg 8784 enreffi 8967 ssdomfi 8980 ssdomfi2 8981 wdomref 9329 infxpenc 9772 pwfseqlem5 10417 fproddvdsd 16042 wunndx 16894 idfucl 17594 idffth 17647 ressffth 17652 setccatid 17797 estrccatid 17846 funcestrcsetclem7 17861 funcestrcsetclem8 17862 equivestrcsetc 17867 funcsetcestrclem7 17876 funcsetcestrclem8 17877 idmhm 18437 ielefmnd 18524 sursubmefmnd 18533 injsubmefmnd 18534 idghm 18847 idresperm 18991 islinds2 21018 lindfres 21028 lindsmm 21033 mdetunilem9 21767 ssidcn 22404 resthauslem 22512 sshauslem 22521 idqtop 22855 fmid 23109 iducn 23433 mbfid 24797 dvid 25080 dvexp 25115 wilthlem2 26216 wilthlem3 26217 idmot 26896 ausgrusgrb 27533 upgrres1 27678 umgrres1 27679 usgrres1 27680 usgrexilem 27805 sizusglecusglem1 27826 pliguhgr 28845 hoif 30113 idunop 30337 idcnop 30340 elunop2 30372 fcobijfs 31055 symgcom 31349 pmtridf1o 31358 cycpmfvlem 31376 cycpmfv3 31379 cycpmcl 31380 islinds5 31560 ellspds 31561 qqhre 31967 rrhre 31968 subfacp1lem4 33142 subfacp1lem5 33143 poimirlem15 35789 poimirlem22 35796 idlaut 38107 tendoidcl 38780 tendo0co2 38799 erng1r 39006 dvalveclem 39036 dva0g 39038 dvh0g 39122 mzpresrename 40569 eldioph2lem1 40579 eldioph2lem2 40580 diophren 40632 kelac2 40887 lnrfg 40941 fundcmpsurbijinjpreimafv 44826 fundcmpsurinjimaid 44830 isomgreqve 45244 ushrisomgr 45260 uspgrsprfo 45277 idmgmhm 45309 funcringcsetcALTV2lem8 45568 funcringcsetclem8ALTV 45591 itcovalendof 45982 |
Copyright terms: Public domain | W3C validator |