| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6667 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | cnvresid 6615 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 3 | 2 | fneq1i 6635 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
| 5 | dff1o4 6826 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
| 6 | 1, 4, 5 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5547 ◡ccnv 5653 ↾ cres 5656 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1ovi 6857 fveqf1o 7295 f1ofvswap 7299 isoid 7322 enrefg 8998 ssdomg 9014 enreffi 9197 ssdomfi 9210 ssdomfi2 9211 wdomref 9586 infxpenc 10032 pwfseqlem5 10677 fproddvdsd 16354 wunndx 17214 idfucl 17894 idffth 17948 ressffth 17953 setccatid 18097 estrccatid 18144 funcestrcsetclem7 18158 funcestrcsetclem8 18159 equivestrcsetc 18164 funcsetcestrclem7 18173 funcsetcestrclem8 18174 idmgmhm 18679 idmhm 18773 ielefmnd 18865 sursubmefmnd 18874 injsubmefmnd 18875 idghm 19214 idresperm 19367 islinds2 21773 lindfres 21783 lindsmm 21788 mdetunilem9 22558 ssidcn 23193 resthauslem 23301 sshauslem 23310 idqtop 23644 fmid 23898 iducn 24221 mbfid 25588 dvid 25871 dvexp 25909 wilthlem2 27031 wilthlem3 27032 idmot 28516 ausgrusgrb 29144 upgrres1 29292 umgrres1 29293 usgrres1 29294 usgrexilem 29419 sizusglecusglem1 29441 pliguhgr 30467 hoif 31735 idunop 31959 idcnop 31962 elunop2 31994 fcobijfs 32700 symgcom 33094 fzo0pmtrlast 33103 pmtridf1o 33105 cycpmfvlem 33123 cycpmfv3 33126 cycpmcl 33127 islinds5 33382 ellspds 33383 qqhre 34051 rrhre 34052 subfacp1lem4 35205 subfacp1lem5 35206 poimirlem15 37659 poimirlem22 37666 idlaut 40115 tendoidcl 40788 tendo0co2 40807 erng1r 41014 dvalveclem 41044 dva0g 41046 dvh0g 41130 mzpresrename 42773 eldioph2lem1 42783 eldioph2lem2 42784 diophren 42836 kelac2 43089 lnrfg 43143 fundcmpsurbijinjpreimafv 47421 fundcmpsurinjimaid 47425 grimidvtxedg 47898 ushggricedg 47940 stgrusgra 47971 grlicref 48017 gpgusgra 48061 uspgrsprfo 48123 funcringcsetcALTV2lem8 48272 funcringcsetclem8ALTV 48295 itcovalendof 48649 tposidf1o 48862 imaidfu 49069 idfth 49098 idsubc 49099 oduoppcciso 49443 |
| Copyright terms: Public domain | W3C validator |