| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) Avoid ax-12 2182. (Revised by TM, 10-Feb-2026.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6617 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | funi 6520 | . . . 4 ⊢ Fun I | |
| 3 | cnvi 6095 | . . . . 5 ⊢ ◡ I = I | |
| 4 | 3 | funeqi 6509 | . . . 4 ⊢ (Fun ◡ I ↔ Fun I ) |
| 5 | 2, 4 | mpbir 231 | . . 3 ⊢ Fun ◡ I |
| 6 | funres11 6565 | . . 3 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ Fun ◡( I ↾ 𝐴) |
| 8 | rnresi 6030 | . 2 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 9 | dff1o2 6775 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ Fun ◡( I ↾ 𝐴) ∧ ran ( I ↾ 𝐴) = 𝐴)) | |
| 10 | 1, 7, 8, 9 | mpbir3an 1342 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 I cid 5515 ◡ccnv 5620 ran crn 5622 ↾ cres 5623 Fun wfun 6482 Fn wfn 6483 –1-1-onto→wf1o 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 |
| This theorem is referenced by: f1ovi 6810 fveqf1o 7244 f1ofvswap 7248 isoid 7271 enrefg 8915 ssdomg 8931 enreffi 9101 ssdomfi 9114 ssdomfi2 9115 wdomref 9467 infxpenc 9918 pwfseqlem5 10563 fproddvdsd 16250 wunndx 17110 idfucl 17792 idffth 17846 ressffth 17851 setccatid 17995 estrccatid 18042 funcestrcsetclem7 18056 funcestrcsetclem8 18057 equivestrcsetc 18062 funcsetcestrclem7 18071 funcsetcestrclem8 18072 idmgmhm 18613 idmhm 18707 ielefmnd 18799 sursubmefmnd 18808 injsubmefmnd 18809 idghm 19147 idresperm 19302 islinds2 21754 lindfres 21764 lindsmm 21769 mdetunilem9 22538 ssidcn 23173 resthauslem 23281 sshauslem 23290 idqtop 23624 fmid 23878 iducn 24200 mbfid 25566 dvid 25849 dvexp 25887 wilthlem2 27009 wilthlem3 27010 idmot 28518 ausgrusgrb 29147 upgrres1 29295 umgrres1 29296 usgrres1 29297 usgrexilem 29422 sizusglecusglem1 29444 pliguhgr 30470 hoif 31738 idunop 31962 idcnop 31965 elunop2 31997 fcobijfs 32710 fcobijfs2 32711 symgcom 33061 fzo0pmtrlast 33070 pmtridf1o 33072 cycpmfvlem 33090 cycpmfv3 33093 cycpmcl 33094 islinds5 33341 ellspds 33342 qqhre 34056 rrhre 34057 subfacp1lem4 35250 subfacp1lem5 35251 poimirlem15 37698 poimirlem22 37705 idlaut 40218 tendoidcl 40891 tendo0co2 40910 erng1r 41117 dvalveclem 41147 dva0g 41149 dvh0g 41233 mzpresrename 42870 eldioph2lem1 42880 eldioph2lem2 42881 diophren 42933 kelac2 43185 lnrfg 43239 fundcmpsurbijinjpreimafv 47534 fundcmpsurinjimaid 47538 grimidvtxedg 48012 ushggricedg 48054 stgrusgra 48086 grlicref 48139 gpgusgra 48184 gpg5grlim 48220 uspgrsprfo 48275 funcringcsetcALTV2lem8 48424 funcringcsetclem8ALTV 48447 itcovalendof 48797 tposidf1o 49014 idfu1stf1o 49227 imaidfu 49238 idfth 49286 idsubc 49288 fucoppc 49538 oduoppcciso 49694 |
| Copyright terms: Public domain | W3C validator |