| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6650 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | cnvresid 6598 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 3 | 2 | fneq1i 6618 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
| 5 | dff1o4 6811 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
| 6 | 1, 4, 5 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5535 ◡ccnv 5640 ↾ cres 5643 Fn wfn 6509 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: f1ovi 6842 fveqf1o 7280 f1ofvswap 7284 isoid 7307 enrefg 8958 ssdomg 8974 enreffi 9153 ssdomfi 9166 ssdomfi2 9167 wdomref 9532 infxpenc 9978 pwfseqlem5 10623 fproddvdsd 16312 wunndx 17172 idfucl 17850 idffth 17904 ressffth 17909 setccatid 18053 estrccatid 18100 funcestrcsetclem7 18114 funcestrcsetclem8 18115 equivestrcsetc 18120 funcsetcestrclem7 18129 funcsetcestrclem8 18130 idmgmhm 18635 idmhm 18729 ielefmnd 18821 sursubmefmnd 18830 injsubmefmnd 18831 idghm 19170 idresperm 19323 islinds2 21729 lindfres 21739 lindsmm 21744 mdetunilem9 22514 ssidcn 23149 resthauslem 23257 sshauslem 23266 idqtop 23600 fmid 23854 iducn 24177 mbfid 25543 dvid 25826 dvexp 25864 wilthlem2 26986 wilthlem3 26987 idmot 28471 ausgrusgrb 29099 upgrres1 29247 umgrres1 29248 usgrres1 29249 usgrexilem 29374 sizusglecusglem1 29396 pliguhgr 30422 hoif 31690 idunop 31914 idcnop 31917 elunop2 31949 fcobijfs 32653 symgcom 33047 fzo0pmtrlast 33056 pmtridf1o 33058 cycpmfvlem 33076 cycpmfv3 33079 cycpmcl 33080 islinds5 33345 ellspds 33346 qqhre 34017 rrhre 34018 subfacp1lem4 35177 subfacp1lem5 35178 poimirlem15 37636 poimirlem22 37643 idlaut 40097 tendoidcl 40770 tendo0co2 40789 erng1r 40996 dvalveclem 41026 dva0g 41028 dvh0g 41112 mzpresrename 42745 eldioph2lem1 42755 eldioph2lem2 42756 diophren 42808 kelac2 43061 lnrfg 43115 fundcmpsurbijinjpreimafv 47412 fundcmpsurinjimaid 47416 grimidvtxedg 47889 ushggricedg 47931 stgrusgra 47962 grlicref 48008 gpgusgra 48052 uspgrsprfo 48140 funcringcsetcALTV2lem8 48289 funcringcsetclem8ALTV 48312 itcovalendof 48662 tposidf1o 48879 idfu1stf1o 49092 imaidfu 49103 idfth 49151 idsubc 49153 fucoppc 49403 oduoppcciso 49559 |
| Copyright terms: Public domain | W3C validator |