| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oi | Structured version Visualization version GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6647 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | cnvresid 6595 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 3 | 2 | fneq1i 6615 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
| 5 | dff1o4 6808 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
| 6 | 1, 4, 5 | mpbir2an 711 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5532 ◡ccnv 5637 ↾ cres 5640 Fn wfn 6506 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1ovi 6839 fveqf1o 7277 f1ofvswap 7281 isoid 7304 enrefg 8955 ssdomg 8971 enreffi 9147 ssdomfi 9160 ssdomfi2 9161 wdomref 9525 infxpenc 9971 pwfseqlem5 10616 fproddvdsd 16305 wunndx 17165 idfucl 17843 idffth 17897 ressffth 17902 setccatid 18046 estrccatid 18093 funcestrcsetclem7 18107 funcestrcsetclem8 18108 equivestrcsetc 18113 funcsetcestrclem7 18122 funcsetcestrclem8 18123 idmgmhm 18628 idmhm 18722 ielefmnd 18814 sursubmefmnd 18823 injsubmefmnd 18824 idghm 19163 idresperm 19316 islinds2 21722 lindfres 21732 lindsmm 21737 mdetunilem9 22507 ssidcn 23142 resthauslem 23250 sshauslem 23259 idqtop 23593 fmid 23847 iducn 24170 mbfid 25536 dvid 25819 dvexp 25857 wilthlem2 26979 wilthlem3 26980 idmot 28464 ausgrusgrb 29092 upgrres1 29240 umgrres1 29241 usgrres1 29242 usgrexilem 29367 sizusglecusglem1 29389 pliguhgr 30415 hoif 31683 idunop 31907 idcnop 31910 elunop2 31942 fcobijfs 32646 symgcom 33040 fzo0pmtrlast 33049 pmtridf1o 33051 cycpmfvlem 33069 cycpmfv3 33072 cycpmcl 33073 islinds5 33338 ellspds 33339 qqhre 34010 rrhre 34011 subfacp1lem4 35170 subfacp1lem5 35171 poimirlem15 37629 poimirlem22 37636 idlaut 40090 tendoidcl 40763 tendo0co2 40782 erng1r 40989 dvalveclem 41019 dva0g 41021 dvh0g 41105 mzpresrename 42738 eldioph2lem1 42748 eldioph2lem2 42749 diophren 42801 kelac2 43054 lnrfg 43108 fundcmpsurbijinjpreimafv 47408 fundcmpsurinjimaid 47412 grimidvtxedg 47885 ushggricedg 47927 stgrusgra 47958 grlicref 48004 gpgusgra 48048 uspgrsprfo 48136 funcringcsetcALTV2lem8 48285 funcringcsetclem8ALTV 48308 itcovalendof 48658 tposidf1o 48875 idfu1stf1o 49088 imaidfu 49099 idfth 49147 idsubc 49149 fucoppc 49399 oduoppcciso 49555 |
| Copyright terms: Public domain | W3C validator |