![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fabexgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fabexg 7958 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
fabexgOLD | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7768 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
2 | pwexg 5383 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
3 | fabexg.1 | . . . . 5 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
4 | fssxp 6763 | . . . . . . . 8 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ⊆ (𝐴 × 𝐵)) | |
5 | velpw 4609 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵)) | |
6 | 4, 5 | sylibr 234 | . . . . . . 7 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) |
7 | 6 | anim1i 615 | . . . . . 6 ⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)) |
8 | 7 | ss2abi 4076 | . . . . 5 ⊢ {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
9 | 3, 8 | eqsstri 4029 | . . . 4 ⊢ 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
10 | ssab2 4088 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵) | |
11 | 9, 10 | sstri 4004 | . . 3 ⊢ 𝐹 ⊆ 𝒫 (𝐴 × 𝐵) |
12 | ssexg 5328 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V) | |
13 | 11, 12 | mpan 690 | . 2 ⊢ (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V) |
14 | 1, 2, 13 | 3syl 18 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 Vcvv 3477 ⊆ wss 3962 𝒫 cpw 4604 × cxp 5686 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |