| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fabexg 7932 as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabexgOLD | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7742 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
| 2 | pwexg 5348 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
| 3 | fabexg.1 | . . . . 5 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | fssxp 6732 | . . . . . . . 8 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 5 | velpw 4580 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 6 | 4, 5 | sylibr 234 | . . . . . . 7 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) |
| 7 | 6 | anim1i 615 | . . . . . 6 ⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)) |
| 8 | 7 | ss2abi 4042 | . . . . 5 ⊢ {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 9 | 3, 8 | eqsstri 4005 | . . . 4 ⊢ 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 10 | ssab2 4054 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵) | |
| 11 | 9, 10 | sstri 3968 | . . 3 ⊢ 𝐹 ⊆ 𝒫 (𝐴 × 𝐵) |
| 12 | ssexg 5293 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V) | |
| 13 | 11, 12 | mpan 690 | . 2 ⊢ (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V) |
| 14 | 1, 2, 13 | 3syl 18 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 × cxp 5652 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |