Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   GIF version

Theorem stoweidlem62 43853
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1 𝑡𝐹
stoweidlem62.2 𝑓𝜑
stoweidlem62.3 𝑡𝜑
stoweidlem62.4 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
stoweidlem62.5 𝐾 = (topGen‘ran (,))
stoweidlem62.6 𝑇 = 𝐽
stoweidlem62.7 (𝜑𝐽 ∈ Comp)
stoweidlem62.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem62.9 (𝜑𝐴𝐶)
stoweidlem62.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem62.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem62.14 (𝜑𝐹𝐶)
stoweidlem62.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem62.16 (𝜑𝑇 ≠ ∅)
stoweidlem62.17 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem62 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑞,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐻,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝐸,𝑞,𝑟,𝑥   𝐻,𝑞,𝑟,𝑥   𝑇,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥   𝑡,𝐾   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡,𝑟,𝑞)   𝐻(𝑡)   𝐽(𝑥,𝑔,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem62
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
2 nfmpt1 5195 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
31, 2nfcxfr 2903 . . . 4 𝑡𝐻
4 stoweidlem62.3 . . . 4 𝑡𝜑
5 stoweidlem62.5 . . . 4 𝐾 = (topGen‘ran (,))
6 stoweidlem62.7 . . . 4 (𝜑𝐽 ∈ Comp)
7 stoweidlem62.6 . . . 4 𝑇 = 𝐽
8 stoweidlem62.16 . . . 4 (𝜑𝑇 ≠ ∅)
9 stoweidlem62.8 . . . 4 𝐶 = (𝐽 Cn 𝐾)
10 stoweidlem62.9 . . . 4 (𝜑𝐴𝐶)
11 eleq1w 2820 . . . . . . 7 (𝑔 = → (𝑔𝐴𝐴))
12113anbi3d 1441 . . . . . 6 (𝑔 = → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝑓𝐴𝐴)))
13 fveq1 6811 . . . . . . . . 9 (𝑔 = → (𝑔𝑡) = (𝑡))
1413oveq2d 7333 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) + (𝑔𝑡)) = ((𝑓𝑡) + (𝑡)))
1514mpteq2dv 5189 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))))
1615eleq1d 2822 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴))
1712, 16imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)))
18 stoweidlem62.10 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1917, 18chvarvv 2001 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)
2013oveq2d 7333 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝑡)))
2120mpteq2dv 5189 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))))
2221eleq1d 2822 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴))
2312, 22imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)))
24 stoweidlem62.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2523, 24chvarvv 2001 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)
26 stoweidlem62.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
27 stoweidlem62.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
28 stoweidlem62.1 . . . . . 6 𝑡𝐹
2928nfrn 5881 . . . . . . 7 𝑡ran 𝐹
30 nfcv 2905 . . . . . . 7 𝑡
31 nfcv 2905 . . . . . . 7 𝑡 <
3229, 30, 31nfinf 9318 . . . . . 6 𝑡inf(ran 𝐹, ℝ, < )
33 eqid 2737 . . . . . 6 (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, < )})
34 cmptop 22629 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
356, 34syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
36 stoweidlem62.14 . . . . . 6 (𝜑𝐹𝐶)
3736, 9eleqtrdi 2848 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3828, 4, 7, 5, 6, 37, 8stoweidlem29 43820 . . . . . . 7 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
3938simp2d 1142 . . . . . 6 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 43838 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶)
411, 40eqeltrid 2842 . . . 4 (𝜑𝐻𝐶)
4238simp3d 1143 . . . . . . . . 9 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
4342r19.21bi 3231 . . . . . . . 8 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
445, 7, 9, 36fcnre 42802 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4544ffvelcdmda 7001 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4639adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4745, 46subge0d 11645 . . . . . . . 8 ((𝜑𝑡𝑇) → (0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
4843, 47mpbird 256 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
49 simpr 485 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
5045, 46resubcld 11483 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
511fvmpt2 6926 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5249, 50, 51syl2anc 584 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5348, 52breqtrrd 5115 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
5453ex 413 . . . . 5 (𝜑 → (𝑡𝑇 → 0 ≤ (𝐻𝑡)))
554, 54ralrimi 3237 . . . 4 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐻𝑡))
56 stoweidlem62.15 . . . . 5 (𝜑𝐸 ∈ ℝ+)
5756rphalfcld 12864 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5856rpred 12852 . . . . . 6 (𝜑𝐸 ∈ ℝ)
5958rehalfcld 12300 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
60 3re 12133 . . . . . . 7 3 ∈ ℝ
61 3ne0 12159 . . . . . . 7 3 ≠ 0
6260, 61rereccli 11820 . . . . . 6 (1 / 3) ∈ ℝ
6362a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
64 rphalflt 12839 . . . . . 6 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
6556, 64syl 17 . . . . 5 (𝜑 → (𝐸 / 2) < 𝐸)
66 stoweidlem62.17 . . . . 5 (𝜑𝐸 < (1 / 3))
6759, 58, 63, 65, 66lttrd 11216 . . . 4 (𝜑 → (𝐸 / 2) < (1 / 3))
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 43852 . . 3 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
69 nfra1 3264 . . . . . . 7 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))
704, 69nfan 1901 . . . . . 6 𝑡(𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
71 rsp 3227 . . . . . . 7 (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))))
7256rpcnd 12854 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
73 2cnd 12131 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
74 2ne0 12157 . . . . . . . . . . 11 2 ≠ 0
7574a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
7672, 73, 75divcan2d 11833 . . . . . . . . 9 (𝜑 → (2 · (𝐸 / 2)) = 𝐸)
7776breq2d 5099 . . . . . . . 8 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7877biimpd 228 . . . . . . 7 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7971, 78sylan9r 509 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8070, 79ralrimi 3237 . . . . 5 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
8180ex 413 . . . 4 (𝜑 → (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8281reximdv 3164 . . 3 (𝜑 → (∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8368, 82mpd 15 . 2 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
84 nfmpt1 5195 . . 3 𝑡(𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
85 nfcv 2905 . . 3 𝑡
86 nfv 1916 . . . . 5 𝑡 𝐴
87 nfra1 3264 . . . . 5 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸
8886, 87nfan 1901 . . . 4 𝑡(𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
894, 88nfan 1901 . . 3 𝑡(𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
90 eqid 2737 . . 3 (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
9144adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ)
9239adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
93183adant1r 1176 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9426adantlr 712 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
95 stoweidlem62.2 . . . . 5 𝑓𝜑
9610sseld 3930 . . . . . . . 8 (𝜑 → (𝑓𝐴𝑓𝐶))
979eleq2i 2829 . . . . . . . 8 (𝑓𝐶𝑓 ∈ (𝐽 Cn 𝐾))
9896, 97syl6ib 250 . . . . . . 7 (𝜑 → (𝑓𝐴𝑓 ∈ (𝐽 Cn 𝐾)))
99 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
100 uniretop 24009 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1015unieqi 4863 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
102100, 101eqtr4i 2768 . . . . . . . 8 ℝ = 𝐾
10399, 102cnf 22480 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽⟶ℝ)
10498, 103syl6 35 . . . . . 6 (𝜑 → (𝑓𝐴𝑓: 𝐽⟶ℝ))
105 feq2 6620 . . . . . . 7 (𝑇 = 𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
1067, 105mp1i 13 . . . . . 6 (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
107104, 106sylibrd 258 . . . . 5 (𝜑 → (𝑓𝐴𝑓:𝑇⟶ℝ))
10895, 107ralrimi 3237 . . . 4 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
109108adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
110 simprl 768 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐴)
11152eqcomd 2743 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻𝑡))
112111oveq2d 7333 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = ((𝑡) − (𝐻𝑡)))
113112fveq2d 6816 . . . . . . 7 ((𝜑𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
114113adantlr 712 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
115 simplrr 775 . . . . . . 7 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
116 rspa 3228 . . . . . . 7 ((∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
117115, 116sylancom 588 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
118114, 117eqbrtrd 5109 . . . . 5 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
119118ex 413 . . . 4 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → (𝑡𝑇 → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸))
12089, 119ralrimi 3237 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑡𝑇 (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 43812 . 2 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
12283, 121rexlimddv 3155 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wnf 1784  wcel 2105  wnfc 2885  wne 2941  wral 3062  wrex 3071  wss 3897  c0 4267  {csn 4571   cuni 4850   class class class wbr 5087  cmpt 5170   × cxp 5606  ran crn 5609  wf 6462  cfv 6466  (class class class)co 7317  infcinf 9277  cr 10950  0cc0 10951  1c1 10952   + caddc 10954   · cmul 10956   < clt 11089  cle 11090  cmin 11285  -cneg 11286   / cdiv 11712  2c2 12108  3c3 12109  +crp 12810  (,)cioo 13159  abscabs 15024  topGenctg 17225  Topctop 22125   Cn ccn 22458  Compccmp 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030  ax-mulf 11031
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-fi 9247  df-sup 9278  df-inf 9279  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-q 12769  df-rp 12811  df-xneg 12928  df-xadd 12929  df-xmul 12930  df-ioo 13163  df-ioc 13164  df-ico 13165  df-icc 13166  df-fz 13320  df-fzo 13463  df-fl 13592  df-seq 13802  df-exp 13863  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-rlim 15277  df-sum 15477  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-starv 17054  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-unif 17062  df-hom 17063  df-cco 17064  df-rest 17210  df-topn 17211  df-0g 17229  df-gsum 17230  df-topgen 17231  df-pt 17232  df-prds 17235  df-xrs 17290  df-qtop 17295  df-imas 17296  df-xps 17298  df-mre 17372  df-mrc 17373  df-acs 17375  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-submnd 18508  df-mulg 18777  df-cntz 18999  df-cmn 19463  df-psmet 20672  df-xmet 20673  df-met 20674  df-bl 20675  df-mopn 20676  df-cnfld 20681  df-top 22126  df-topon 22143  df-topsp 22165  df-bases 22179  df-cld 22253  df-cn 22461  df-cnp 22462  df-cmp 22621  df-tx 22796  df-hmeo 22989  df-xms 23556  df-ms 23557  df-tms 23558
This theorem is referenced by:  stoweid  43854
  Copyright terms: Public domain W3C validator