Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   GIF version

Theorem stoweidlem62 46077
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1 𝑡𝐹
stoweidlem62.2 𝑓𝜑
stoweidlem62.3 𝑡𝜑
stoweidlem62.4 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
stoweidlem62.5 𝐾 = (topGen‘ran (,))
stoweidlem62.6 𝑇 = 𝐽
stoweidlem62.7 (𝜑𝐽 ∈ Comp)
stoweidlem62.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem62.9 (𝜑𝐴𝐶)
stoweidlem62.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem62.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem62.14 (𝜑𝐹𝐶)
stoweidlem62.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem62.16 (𝜑𝑇 ≠ ∅)
stoweidlem62.17 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem62 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑞,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐻,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝐸,𝑞,𝑟,𝑥   𝐻,𝑞,𝑟,𝑥   𝑇,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥   𝑡,𝐾   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡,𝑟,𝑞)   𝐻(𝑡)   𝐽(𝑥,𝑔,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem62
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
2 nfmpt1 5250 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
31, 2nfcxfr 2903 . . . 4 𝑡𝐻
4 stoweidlem62.3 . . . 4 𝑡𝜑
5 stoweidlem62.5 . . . 4 𝐾 = (topGen‘ran (,))
6 stoweidlem62.7 . . . 4 (𝜑𝐽 ∈ Comp)
7 stoweidlem62.6 . . . 4 𝑇 = 𝐽
8 stoweidlem62.16 . . . 4 (𝜑𝑇 ≠ ∅)
9 stoweidlem62.8 . . . 4 𝐶 = (𝐽 Cn 𝐾)
10 stoweidlem62.9 . . . 4 (𝜑𝐴𝐶)
11 eleq1w 2824 . . . . . . 7 (𝑔 = → (𝑔𝐴𝐴))
12113anbi3d 1444 . . . . . 6 (𝑔 = → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝑓𝐴𝐴)))
13 fveq1 6905 . . . . . . . . 9 (𝑔 = → (𝑔𝑡) = (𝑡))
1413oveq2d 7447 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) + (𝑔𝑡)) = ((𝑓𝑡) + (𝑡)))
1514mpteq2dv 5244 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))))
1615eleq1d 2826 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴))
1712, 16imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)))
18 stoweidlem62.10 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1917, 18chvarvv 1998 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)
2013oveq2d 7447 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝑡)))
2120mpteq2dv 5244 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))))
2221eleq1d 2826 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴))
2312, 22imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)))
24 stoweidlem62.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2523, 24chvarvv 1998 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)
26 stoweidlem62.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
27 stoweidlem62.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
28 stoweidlem62.1 . . . . . 6 𝑡𝐹
2928nfrn 5963 . . . . . . 7 𝑡ran 𝐹
30 nfcv 2905 . . . . . . 7 𝑡
31 nfcv 2905 . . . . . . 7 𝑡 <
3229, 30, 31nfinf 9522 . . . . . 6 𝑡inf(ran 𝐹, ℝ, < )
33 eqid 2737 . . . . . 6 (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, < )})
34 cmptop 23403 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
356, 34syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
36 stoweidlem62.14 . . . . . 6 (𝜑𝐹𝐶)
3736, 9eleqtrdi 2851 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3828, 4, 7, 5, 6, 37, 8stoweidlem29 46044 . . . . . . 7 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
3938simp2d 1144 . . . . . 6 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 46062 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶)
411, 40eqeltrid 2845 . . . 4 (𝜑𝐻𝐶)
4238simp3d 1145 . . . . . . . . 9 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
4342r19.21bi 3251 . . . . . . . 8 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
445, 7, 9, 36fcnre 45030 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4544ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4639adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4745, 46subge0d 11853 . . . . . . . 8 ((𝜑𝑡𝑇) → (0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
4843, 47mpbird 257 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
49 simpr 484 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
5045, 46resubcld 11691 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
511fvmpt2 7027 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5249, 50, 51syl2anc 584 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5348, 52breqtrrd 5171 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
5453ex 412 . . . . 5 (𝜑 → (𝑡𝑇 → 0 ≤ (𝐻𝑡)))
554, 54ralrimi 3257 . . . 4 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐻𝑡))
56 stoweidlem62.15 . . . . 5 (𝜑𝐸 ∈ ℝ+)
5756rphalfcld 13089 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5856rpred 13077 . . . . . 6 (𝜑𝐸 ∈ ℝ)
5958rehalfcld 12513 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
60 3re 12346 . . . . . . 7 3 ∈ ℝ
61 3ne0 12372 . . . . . . 7 3 ≠ 0
6260, 61rereccli 12032 . . . . . 6 (1 / 3) ∈ ℝ
6362a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
64 rphalflt 13064 . . . . . 6 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
6556, 64syl 17 . . . . 5 (𝜑 → (𝐸 / 2) < 𝐸)
66 stoweidlem62.17 . . . . 5 (𝜑𝐸 < (1 / 3))
6759, 58, 63, 65, 66lttrd 11422 . . . 4 (𝜑 → (𝐸 / 2) < (1 / 3))
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 46076 . . 3 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
69 nfra1 3284 . . . . . . 7 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))
704, 69nfan 1899 . . . . . 6 𝑡(𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
71 rsp 3247 . . . . . . 7 (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))))
7256rpcnd 13079 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
73 2cnd 12344 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
74 2ne0 12370 . . . . . . . . . . 11 2 ≠ 0
7574a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
7672, 73, 75divcan2d 12045 . . . . . . . . 9 (𝜑 → (2 · (𝐸 / 2)) = 𝐸)
7776breq2d 5155 . . . . . . . 8 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7877biimpd 229 . . . . . . 7 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7971, 78sylan9r 508 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8070, 79ralrimi 3257 . . . . 5 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
8180ex 412 . . . 4 (𝜑 → (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8281reximdv 3170 . . 3 (𝜑 → (∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8368, 82mpd 15 . 2 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
84 nfmpt1 5250 . . 3 𝑡(𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
85 nfcv 2905 . . 3 𝑡
86 nfv 1914 . . . . 5 𝑡 𝐴
87 nfra1 3284 . . . . 5 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸
8886, 87nfan 1899 . . . 4 𝑡(𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
894, 88nfan 1899 . . 3 𝑡(𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
90 eqid 2737 . . 3 (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
9144adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ)
9239adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
93183adant1r 1178 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9426adantlr 715 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
95 stoweidlem62.2 . . . . 5 𝑓𝜑
9610sseld 3982 . . . . . . . 8 (𝜑 → (𝑓𝐴𝑓𝐶))
979eleq2i 2833 . . . . . . . 8 (𝑓𝐶𝑓 ∈ (𝐽 Cn 𝐾))
9896, 97imbitrdi 251 . . . . . . 7 (𝜑 → (𝑓𝐴𝑓 ∈ (𝐽 Cn 𝐾)))
99 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
100 uniretop 24783 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1015unieqi 4919 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
102100, 101eqtr4i 2768 . . . . . . . 8 ℝ = 𝐾
10399, 102cnf 23254 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽⟶ℝ)
10498, 103syl6 35 . . . . . 6 (𝜑 → (𝑓𝐴𝑓: 𝐽⟶ℝ))
105 feq2 6717 . . . . . . 7 (𝑇 = 𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
1067, 105mp1i 13 . . . . . 6 (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
107104, 106sylibrd 259 . . . . 5 (𝜑 → (𝑓𝐴𝑓:𝑇⟶ℝ))
10895, 107ralrimi 3257 . . . 4 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
109108adantr 480 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
110 simprl 771 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐴)
11152eqcomd 2743 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻𝑡))
112111oveq2d 7447 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = ((𝑡) − (𝐻𝑡)))
113112fveq2d 6910 . . . . . . 7 ((𝜑𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
114113adantlr 715 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
115 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
116 rspa 3248 . . . . . . 7 ((∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
117115, 116sylancom 588 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
118114, 117eqbrtrd 5165 . . . . 5 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
119118ex 412 . . . 4 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → (𝑡𝑇 → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸))
12089, 119ralrimi 3257 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑡𝑇 (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 46036 . 2 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
12283, 121rexlimddv 3161 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333  {csn 4626   cuni 4907   class class class wbr 5143  cmpt 5225   × cxp 5683  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  3c3 12322  +crp 13034  (,)cioo 13387  abscabs 15273  topGenctg 17482  Topctop 22899   Cn ccn 23232  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332
This theorem is referenced by:  stoweid  46078
  Copyright terms: Public domain W3C validator