Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   GIF version

Theorem stoweidlem62 44293
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1 𝑡𝐹
stoweidlem62.2 𝑓𝜑
stoweidlem62.3 𝑡𝜑
stoweidlem62.4 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
stoweidlem62.5 𝐾 = (topGen‘ran (,))
stoweidlem62.6 𝑇 = 𝐽
stoweidlem62.7 (𝜑𝐽 ∈ Comp)
stoweidlem62.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem62.9 (𝜑𝐴𝐶)
stoweidlem62.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem62.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem62.14 (𝜑𝐹𝐶)
stoweidlem62.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem62.16 (𝜑𝑇 ≠ ∅)
stoweidlem62.17 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem62 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑞,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐻,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝐸,𝑞,𝑟,𝑥   𝐻,𝑞,𝑟,𝑥   𝑇,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥   𝑡,𝐾   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡,𝑟,𝑞)   𝐻(𝑡)   𝐽(𝑥,𝑔,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem62
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
2 nfmpt1 5213 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
31, 2nfcxfr 2905 . . . 4 𝑡𝐻
4 stoweidlem62.3 . . . 4 𝑡𝜑
5 stoweidlem62.5 . . . 4 𝐾 = (topGen‘ran (,))
6 stoweidlem62.7 . . . 4 (𝜑𝐽 ∈ Comp)
7 stoweidlem62.6 . . . 4 𝑇 = 𝐽
8 stoweidlem62.16 . . . 4 (𝜑𝑇 ≠ ∅)
9 stoweidlem62.8 . . . 4 𝐶 = (𝐽 Cn 𝐾)
10 stoweidlem62.9 . . . 4 (𝜑𝐴𝐶)
11 eleq1w 2820 . . . . . . 7 (𝑔 = → (𝑔𝐴𝐴))
12113anbi3d 1442 . . . . . 6 (𝑔 = → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝑓𝐴𝐴)))
13 fveq1 6841 . . . . . . . . 9 (𝑔 = → (𝑔𝑡) = (𝑡))
1413oveq2d 7373 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) + (𝑔𝑡)) = ((𝑓𝑡) + (𝑡)))
1514mpteq2dv 5207 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))))
1615eleq1d 2822 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴))
1712, 16imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)))
18 stoweidlem62.10 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1917, 18chvarvv 2002 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)
2013oveq2d 7373 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝑡)))
2120mpteq2dv 5207 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))))
2221eleq1d 2822 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴))
2312, 22imbi12d 344 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)))
24 stoweidlem62.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2523, 24chvarvv 2002 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)
26 stoweidlem62.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
27 stoweidlem62.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
28 stoweidlem62.1 . . . . . 6 𝑡𝐹
2928nfrn 5907 . . . . . . 7 𝑡ran 𝐹
30 nfcv 2907 . . . . . . 7 𝑡
31 nfcv 2907 . . . . . . 7 𝑡 <
3229, 30, 31nfinf 9418 . . . . . 6 𝑡inf(ran 𝐹, ℝ, < )
33 eqid 2736 . . . . . 6 (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, < )})
34 cmptop 22746 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
356, 34syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
36 stoweidlem62.14 . . . . . 6 (𝜑𝐹𝐶)
3736, 9eleqtrdi 2848 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3828, 4, 7, 5, 6, 37, 8stoweidlem29 44260 . . . . . . 7 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
3938simp2d 1143 . . . . . 6 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 44278 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶)
411, 40eqeltrid 2842 . . . 4 (𝜑𝐻𝐶)
4238simp3d 1144 . . . . . . . . 9 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
4342r19.21bi 3234 . . . . . . . 8 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
445, 7, 9, 36fcnre 43220 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4544ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4639adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4745, 46subge0d 11745 . . . . . . . 8 ((𝜑𝑡𝑇) → (0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
4843, 47mpbird 256 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
49 simpr 485 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
5045, 46resubcld 11583 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
511fvmpt2 6959 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5249, 50, 51syl2anc 584 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5348, 52breqtrrd 5133 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
5453ex 413 . . . . 5 (𝜑 → (𝑡𝑇 → 0 ≤ (𝐻𝑡)))
554, 54ralrimi 3240 . . . 4 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐻𝑡))
56 stoweidlem62.15 . . . . 5 (𝜑𝐸 ∈ ℝ+)
5756rphalfcld 12969 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5856rpred 12957 . . . . . 6 (𝜑𝐸 ∈ ℝ)
5958rehalfcld 12400 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
60 3re 12233 . . . . . . 7 3 ∈ ℝ
61 3ne0 12259 . . . . . . 7 3 ≠ 0
6260, 61rereccli 11920 . . . . . 6 (1 / 3) ∈ ℝ
6362a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
64 rphalflt 12944 . . . . . 6 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
6556, 64syl 17 . . . . 5 (𝜑 → (𝐸 / 2) < 𝐸)
66 stoweidlem62.17 . . . . 5 (𝜑𝐸 < (1 / 3))
6759, 58, 63, 65, 66lttrd 11316 . . . 4 (𝜑 → (𝐸 / 2) < (1 / 3))
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 44292 . . 3 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
69 nfra1 3267 . . . . . . 7 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))
704, 69nfan 1902 . . . . . 6 𝑡(𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
71 rsp 3230 . . . . . . 7 (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))))
7256rpcnd 12959 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
73 2cnd 12231 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
74 2ne0 12257 . . . . . . . . . . 11 2 ≠ 0
7574a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
7672, 73, 75divcan2d 11933 . . . . . . . . 9 (𝜑 → (2 · (𝐸 / 2)) = 𝐸)
7776breq2d 5117 . . . . . . . 8 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7877biimpd 228 . . . . . . 7 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7971, 78sylan9r 509 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8070, 79ralrimi 3240 . . . . 5 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
8180ex 413 . . . 4 (𝜑 → (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8281reximdv 3167 . . 3 (𝜑 → (∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8368, 82mpd 15 . 2 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
84 nfmpt1 5213 . . 3 𝑡(𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
85 nfcv 2907 . . 3 𝑡
86 nfv 1917 . . . . 5 𝑡 𝐴
87 nfra1 3267 . . . . 5 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸
8886, 87nfan 1902 . . . 4 𝑡(𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
894, 88nfan 1902 . . 3 𝑡(𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
90 eqid 2736 . . 3 (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
9144adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ)
9239adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
93183adant1r 1177 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9426adantlr 713 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
95 stoweidlem62.2 . . . . 5 𝑓𝜑
9610sseld 3943 . . . . . . . 8 (𝜑 → (𝑓𝐴𝑓𝐶))
979eleq2i 2829 . . . . . . . 8 (𝑓𝐶𝑓 ∈ (𝐽 Cn 𝐾))
9896, 97syl6ib 250 . . . . . . 7 (𝜑 → (𝑓𝐴𝑓 ∈ (𝐽 Cn 𝐾)))
99 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
100 uniretop 24126 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1015unieqi 4878 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
102100, 101eqtr4i 2767 . . . . . . . 8 ℝ = 𝐾
10399, 102cnf 22597 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽⟶ℝ)
10498, 103syl6 35 . . . . . 6 (𝜑 → (𝑓𝐴𝑓: 𝐽⟶ℝ))
105 feq2 6650 . . . . . . 7 (𝑇 = 𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
1067, 105mp1i 13 . . . . . 6 (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
107104, 106sylibrd 258 . . . . 5 (𝜑 → (𝑓𝐴𝑓:𝑇⟶ℝ))
10895, 107ralrimi 3240 . . . 4 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
109108adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
110 simprl 769 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐴)
11152eqcomd 2742 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻𝑡))
112111oveq2d 7373 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = ((𝑡) − (𝐻𝑡)))
113112fveq2d 6846 . . . . . . 7 ((𝜑𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
114113adantlr 713 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
115 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
116 rspa 3231 . . . . . . 7 ((∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
117115, 116sylancom 588 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
118114, 117eqbrtrd 5127 . . . . 5 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
119118ex 413 . . . 4 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → (𝑡𝑇 → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸))
12089, 119ralrimi 3240 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑡𝑇 (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 44252 . 2 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
12283, 121rexlimddv 3158 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  3c3 12209  +crp 12915  (,)cioo 13264  abscabs 15119  topGenctg 17319  Topctop 22242   Cn ccn 22575  Compccmp 22737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675
This theorem is referenced by:  stoweid  44294
  Copyright terms: Public domain W3C validator