Step | Hyp | Ref
| Expression |
1 | | stoweidlem62.4 |
. . . . 5
⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) |
2 | | nfmpt1 5178 |
. . . . 5
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) |
3 | 1, 2 | nfcxfr 2904 |
. . . 4
⊢
Ⅎ𝑡𝐻 |
4 | | stoweidlem62.3 |
. . . 4
⊢
Ⅎ𝑡𝜑 |
5 | | stoweidlem62.5 |
. . . 4
⊢ 𝐾 = (topGen‘ran
(,)) |
6 | | stoweidlem62.7 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Comp) |
7 | | stoweidlem62.6 |
. . . 4
⊢ 𝑇 = ∪
𝐽 |
8 | | stoweidlem62.16 |
. . . 4
⊢ (𝜑 → 𝑇 ≠ ∅) |
9 | | stoweidlem62.8 |
. . . 4
⊢ 𝐶 = (𝐽 Cn 𝐾) |
10 | | stoweidlem62.9 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
11 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑔 = ℎ → (𝑔 ∈ 𝐴 ↔ ℎ ∈ 𝐴)) |
12 | 11 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑔 = ℎ → ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) ↔ (𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴))) |
13 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → (𝑔‘𝑡) = (ℎ‘𝑡)) |
14 | 13 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑔 = ℎ → ((𝑓‘𝑡) + (𝑔‘𝑡)) = ((𝑓‘𝑡) + (ℎ‘𝑡))) |
15 | 14 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑔 = ℎ → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (ℎ‘𝑡)))) |
16 | 15 | eleq1d 2823 |
. . . . . 6
⊢ (𝑔 = ℎ → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (ℎ‘𝑡))) ∈ 𝐴)) |
17 | 12, 16 | imbi12d 344 |
. . . . 5
⊢ (𝑔 = ℎ → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (ℎ‘𝑡))) ∈ 𝐴))) |
18 | | stoweidlem62.10 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
19 | 17, 18 | chvarvv 2003 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (ℎ‘𝑡))) ∈ 𝐴) |
20 | 13 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑔 = ℎ → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((𝑓‘𝑡) · (ℎ‘𝑡))) |
21 | 20 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑔 = ℎ → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (ℎ‘𝑡)))) |
22 | 21 | eleq1d 2823 |
. . . . . 6
⊢ (𝑔 = ℎ → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (ℎ‘𝑡))) ∈ 𝐴)) |
23 | 12, 22 | imbi12d 344 |
. . . . 5
⊢ (𝑔 = ℎ → (((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (ℎ‘𝑡))) ∈ 𝐴))) |
24 | | stoweidlem62.11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
25 | 23, 24 | chvarvv 2003 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (ℎ‘𝑡))) ∈ 𝐴) |
26 | | stoweidlem62.12 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
27 | | stoweidlem62.13 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
28 | | stoweidlem62.1 |
. . . . . 6
⊢
Ⅎ𝑡𝐹 |
29 | 28 | nfrn 5850 |
. . . . . . 7
⊢
Ⅎ𝑡ran
𝐹 |
30 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡ℝ |
31 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡
< |
32 | 29, 30, 31 | nfinf 9171 |
. . . . . 6
⊢
Ⅎ𝑡inf(ran 𝐹, ℝ, < ) |
33 | | eqid 2738 |
. . . . . 6
⊢ (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, <
)}) |
34 | | cmptop 22454 |
. . . . . . 7
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
35 | 6, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
36 | | stoweidlem62.14 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐶) |
37 | 36, 9 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
38 | 28, 4, 7, 5, 6, 37,
8 | stoweidlem29 43460 |
. . . . . . 7
⊢ (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡))) |
39 | 38 | simp2d 1141 |
. . . . . 6
⊢ (𝜑 → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
40 | 28, 32, 4, 7, 33, 5,
35, 9, 36, 39 | stoweidlem47 43478 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶) |
41 | 1, 40 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ 𝐶) |
42 | 38 | simp3d 1142 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡)) |
43 | 42 | r19.21bi 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡)) |
44 | 5, 7, 9, 36 | fcnre 42457 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
45 | 44 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
46 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
47 | 45, 46 | subge0d 11495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (0 ≤ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡))) |
48 | 43, 47 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) |
49 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
50 | 45, 46 | resubcld 11333 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )) ∈
ℝ) |
51 | 1 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) →
(𝐻‘𝑡) = ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) |
52 | 49, 50, 51 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡) = ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) |
53 | 48, 52 | breqtrrd 5098 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 0 ≤ (𝐻‘𝑡)) |
54 | 53 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 → 0 ≤ (𝐻‘𝑡))) |
55 | 4, 54 | ralrimi 3139 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐻‘𝑡)) |
56 | | stoweidlem62.15 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
57 | 56 | rphalfcld 12713 |
. . . 4
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) |
58 | 56 | rpred 12701 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℝ) |
59 | 58 | rehalfcld 12150 |
. . . . 5
⊢ (𝜑 → (𝐸 / 2) ∈ ℝ) |
60 | | 3re 11983 |
. . . . . . 7
⊢ 3 ∈
ℝ |
61 | | 3ne0 12009 |
. . . . . . 7
⊢ 3 ≠
0 |
62 | 60, 61 | rereccli 11670 |
. . . . . 6
⊢ (1 / 3)
∈ ℝ |
63 | 62 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 3) ∈
ℝ) |
64 | | rphalflt 12688 |
. . . . . 6
⊢ (𝐸 ∈ ℝ+
→ (𝐸 / 2) < 𝐸) |
65 | 56, 64 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐸 / 2) < 𝐸) |
66 | | stoweidlem62.17 |
. . . . 5
⊢ (𝜑 → 𝐸 < (1 / 3)) |
67 | 59, 58, 63, 65, 66 | lttrd 11066 |
. . . 4
⊢ (𝜑 → (𝐸 / 2) < (1 / 3)) |
68 | 3, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67 | stoweidlem61 43492 |
. . 3
⊢ (𝜑 → ∃ℎ ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2))) |
69 | | nfra1 3142 |
. . . . . . 7
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) |
70 | 4, 69 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2))) |
71 | | rsp 3129 |
. . . . . . 7
⊢
(∀𝑡 ∈
𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) → (𝑡 ∈ 𝑇 → (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)))) |
72 | 56 | rpcnd 12703 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℂ) |
73 | | 2cnd 11981 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
74 | | 2ne0 12007 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ≠ 0) |
76 | 72, 73, 75 | divcan2d 11683 |
. . . . . . . . 9
⊢ (𝜑 → (2 · (𝐸 / 2)) = 𝐸) |
77 | 76 | breq2d 5082 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
78 | 77 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → ((abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) → (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
79 | 71, 78 | sylan9r 508 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2))) → (𝑡 ∈ 𝑇 → (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
80 | 70, 79 | ralrimi 3139 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
81 | 80 | ex 412 |
. . . 4
⊢ (𝜑 → (∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
82 | 81 | reximdv 3201 |
. . 3
⊢ (𝜑 → (∃ℎ ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < (2 · (𝐸 / 2)) → ∃ℎ ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
83 | 68, 82 | mpd 15 |
. 2
⊢ (𝜑 → ∃ℎ ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
84 | | nfmpt1 5178 |
. . 3
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) + inf(ran 𝐹, ℝ, < ))) |
85 | | nfcv 2906 |
. . 3
⊢
Ⅎ𝑡ℎ |
86 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑡 ℎ ∈ 𝐴 |
87 | | nfra1 3142 |
. . . . 5
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸 |
88 | 86, 87 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑡(ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
89 | 4, 88 | nfan 1903 |
. . 3
⊢
Ⅎ𝑡(𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) |
90 | | eqid 2738 |
. . 3
⊢ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) + inf(ran 𝐹, ℝ, < ))) |
91 | 44 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ) |
92 | 39 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
93 | 18 | 3adant1r 1175 |
. . 3
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
94 | 26 | adantlr 711 |
. . 3
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
95 | | stoweidlem62.2 |
. . . . 5
⊢
Ⅎ𝑓𝜑 |
96 | 10 | sseld 3916 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐴 → 𝑓 ∈ 𝐶)) |
97 | 9 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐽 Cn 𝐾)) |
98 | 96, 97 | syl6ib 250 |
. . . . . . 7
⊢ (𝜑 → (𝑓 ∈ 𝐴 → 𝑓 ∈ (𝐽 Cn 𝐾))) |
99 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
100 | | uniretop 23832 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
101 | 5 | unieqi 4849 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ (topGen‘ran (,)) |
102 | 100, 101 | eqtr4i 2769 |
. . . . . . . 8
⊢ ℝ =
∪ 𝐾 |
103 | 99, 102 | cnf 22305 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶ℝ) |
104 | 98, 103 | syl6 35 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ 𝐴 → 𝑓:∪ 𝐽⟶ℝ)) |
105 | | feq2 6566 |
. . . . . . 7
⊢ (𝑇 = ∪
𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓:∪ 𝐽⟶ℝ)) |
106 | 7, 105 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓:∪ 𝐽⟶ℝ)) |
107 | 104, 106 | sylibrd 258 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ 𝐴 → 𝑓:𝑇⟶ℝ)) |
108 | 95, 107 | ralrimi 3139 |
. . . 4
⊢ (𝜑 → ∀𝑓 ∈ 𝐴 𝑓:𝑇⟶ℝ) |
109 | 108 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → ∀𝑓 ∈ 𝐴 𝑓:𝑇⟶ℝ) |
110 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → ℎ ∈ 𝐴) |
111 | 52 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻‘𝑡)) |
112 | 111 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) = ((ℎ‘𝑡) − (𝐻‘𝑡))) |
113 | 112 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (abs‘((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((ℎ‘𝑡) − (𝐻‘𝑡)))) |
114 | 113 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑡 ∈ 𝑇) → (abs‘((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((ℎ‘𝑡) − (𝐻‘𝑡)))) |
115 | | simplrr 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑡 ∈ 𝑇) → ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
116 | | rspa 3130 |
. . . . . . 7
⊢
((∀𝑡 ∈
𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸 ∧ 𝑡 ∈ 𝑇) → (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
117 | 115, 116 | sylancom 587 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑡 ∈ 𝑇) → (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸) |
118 | 114, 117 | eqbrtrd 5092 |
. . . . 5
⊢ (((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) ∧ 𝑡 ∈ 𝑇) → (abs‘((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸) |
119 | 118 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → (𝑡 ∈ 𝑇 → (abs‘((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)) |
120 | 89, 119 | ralrimi 3139 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸) |
121 | 84, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120 | stoweidlem21 43452 |
. 2
⊢ ((𝜑 ∧ (ℎ ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (abs‘((ℎ‘𝑡) − (𝐻‘𝑡))) < 𝐸)) → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) |
122 | 83, 121 | rexlimddv 3219 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) |