MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm2 Structured version   Visualization version   GIF version

Theorem pjdm2 21749
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjdm2.v 𝑉 = (Base‘𝑊)
pjdm2.l 𝐿 = (LSubSp‘𝑊)
pjdm2.o = (ocv‘𝑊)
pjdm2.s = (LSSum‘𝑊)
pjdm2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm2 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))

Proof of Theorem pjdm2
StepHypRef Expression
1 pjdm2.v . . 3 𝑉 = (Base‘𝑊)
2 pjdm2.l . . 3 𝐿 = (LSubSp‘𝑊)
3 pjdm2.o . . 3 = (ocv‘𝑊)
4 eqid 2735 . . 3 (proj1𝑊) = (proj1𝑊)
5 pjdm2.k . . 3 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjdm 21745 . 2 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
7 eqid 2735 . . . . . 6 (+g𝑊) = (+g𝑊)
8 pjdm2.s . . . . . 6 = (LSSum‘𝑊)
9 eqid 2735 . . . . . 6 (0g𝑊) = (0g𝑊)
10 eqid 2735 . . . . . 6 (Cntz‘𝑊) = (Cntz‘𝑊)
11 phllmod 21666 . . . . . . . . 9 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1211adantr 480 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ LMod)
132lsssssubg 20974 . . . . . . . 8 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
1412, 13syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝐿 ⊆ (SubGrp‘𝑊))
15 simpr 484 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝐿)
1614, 15sseldd 3996 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ∈ (SubGrp‘𝑊))
171, 2lssss 20952 . . . . . . . 8 (𝑇𝐿𝑇𝑉)
181, 3, 2ocvlss 21708 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ( 𝑇) ∈ 𝐿)
1917, 18sylan2 593 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ 𝐿)
2014, 19sseldd 3996 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ (SubGrp‘𝑊))
213, 2, 9ocvin 21710 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇 ∩ ( 𝑇)) = {(0g𝑊)})
22 lmodabl 20924 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2312, 22syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ Abel)
2410, 23, 16, 20ablcntzd 19890 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ⊆ ((Cntz‘𝑊)‘( 𝑇)))
257, 8, 9, 10, 16, 20, 21, 24, 4pj1f 19730 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑇)
2617adantl 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝑉)
2725, 26fssd 6754 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉)
28 fdm 6746 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = (𝑇 ( 𝑇)))
2928eqcomd 2741 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → (𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)))
30 fdm 6746 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = 𝑉)
3130eqeq2d 2746 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → ((𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)) ↔ (𝑇 ( 𝑇)) = 𝑉))
3229, 31syl5ibcom 245 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → (𝑇 ( 𝑇)) = 𝑉))
33 feq2 6718 . . . . . 6 ((𝑇 ( 𝑇)) = 𝑉 → ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 ↔ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3433biimpcd 249 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇 ( 𝑇)) = 𝑉 → (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3532, 34impbid 212 . . . 4 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3627, 35syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3736pm5.32da 579 . 2 (𝑊 ∈ PreHil → ((𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉) ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
386, 37bitrid 283 1 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  SubGrpcsubg 19151  Cntzccntz 19346  LSSumclsm 19667  proj1cpj1 19668  Abelcabl 19814  LModclmod 20875  LSubSpclss 20947  PreHilcphl 21660  ocvcocv 21696  projcpj 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-lsm 19669  df-pj1 19670  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-phl 21662  df-ocv 21699  df-pj 21741
This theorem is referenced by:  pjff  21750  pjf2  21752  pjfo  21753  pjcss  21754  ocvpj  21755  ishil2  21757  pjth2  25488
  Copyright terms: Public domain W3C validator