Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjdm2 | Structured version Visualization version GIF version |
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjdm2.v | ⊢ 𝑉 = (Base‘𝑊) |
pjdm2.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
pjdm2.o | ⊢ ⊥ = (ocv‘𝑊) |
pjdm2.s | ⊢ ⊕ = (LSSum‘𝑊) |
pjdm2.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjdm2 | ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjdm2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | pjdm2.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
3 | pjdm2.o | . . 3 ⊢ ⊥ = (ocv‘𝑊) | |
4 | eqid 2738 | . . 3 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | pjdm2.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
6 | 1, 2, 3, 4, 5 | pjdm 20824 | . 2 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) |
7 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
8 | pjdm2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
9 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
10 | eqid 2738 | . . . . . 6 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
11 | phllmod 20747 | . . . . . . . . 9 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ LMod) |
13 | 2 | lsssssubg 20135 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝐿 ⊆ (SubGrp‘𝑊)) |
15 | simpr 484 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ∈ 𝐿) | |
16 | 14, 15 | sseldd 3918 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ∈ (SubGrp‘𝑊)) |
17 | 1, 2 | lssss 20113 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐿 → 𝑇 ⊆ 𝑉) |
18 | 1, 3, 2 | ocvlss 20789 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ( ⊥ ‘𝑇) ∈ 𝐿) |
19 | 17, 18 | sylan2 592 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ( ⊥ ‘𝑇) ∈ 𝐿) |
20 | 14, 19 | sseldd 3918 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ( ⊥ ‘𝑇) ∈ (SubGrp‘𝑊)) |
21 | 3, 2, 9 | ocvin 20791 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇 ∩ ( ⊥ ‘𝑇)) = {(0g‘𝑊)}) |
22 | lmodabl 20085 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
23 | 12, 22 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ Abel) |
24 | 10, 23, 16, 20 | ablcntzd 19373 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ⊆ ((Cntz‘𝑊)‘( ⊥ ‘𝑇))) |
25 | 7, 8, 9, 10, 16, 20, 21, 24, 4 | pj1f 19218 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑇) |
26 | 17 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ⊆ 𝑉) |
27 | 25, 26 | fssd 6602 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉) |
28 | fdm 6593 | . . . . . . 7 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) = (𝑇 ⊕ ( ⊥ ‘𝑇))) | |
29 | 28 | eqcomd 2744 | . . . . . 6 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → (𝑇 ⊕ ( ⊥ ‘𝑇)) = dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇))) |
30 | fdm 6593 | . . . . . . 7 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) = 𝑉) | |
31 | 30 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → ((𝑇 ⊕ ( ⊥ ‘𝑇)) = dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
32 | 29, 31 | syl5ibcom 244 | . . . . 5 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
33 | feq2 6566 | . . . . . 6 ⊢ ((𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 ↔ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) | |
34 | 33 | biimpcd 248 | . . . . 5 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉 → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) |
35 | 32, 34 | impbid 211 | . . . 4 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
36 | 27, 35 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
37 | 36 | pm5.32da 578 | . 2 ⊢ (𝑊 ∈ PreHil → ((𝑇 ∈ 𝐿 ∧ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉) ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
38 | 6, 37 | syl5bb 282 | 1 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 SubGrpcsubg 18664 Cntzccntz 18836 LSSumclsm 19154 proj1cpj1 19155 Abelcabl 19302 LModclmod 20038 LSubSpclss 20108 PreHilcphl 20741 ocvcocv 20777 projcpj 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-sca 16904 df-vsca 16905 df-ip 16906 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-lsm 19156 df-pj1 19157 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-phl 20743 df-ocv 20780 df-pj 20820 |
This theorem is referenced by: pjff 20829 pjf2 20831 pjfo 20832 pjcss 20833 ocvpj 20834 ishil2 20836 pjth2 24509 |
Copyright terms: Public domain | W3C validator |