MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm2 Structured version   Visualization version   GIF version

Theorem pjdm2 21596
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjdm2.v 𝑉 = (Base‘𝑊)
pjdm2.l 𝐿 = (LSubSp‘𝑊)
pjdm2.o = (ocv‘𝑊)
pjdm2.s = (LSSum‘𝑊)
pjdm2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm2 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))

Proof of Theorem pjdm2
StepHypRef Expression
1 pjdm2.v . . 3 𝑉 = (Base‘𝑊)
2 pjdm2.l . . 3 𝐿 = (LSubSp‘𝑊)
3 pjdm2.o . . 3 = (ocv‘𝑊)
4 eqid 2729 . . 3 (proj1𝑊) = (proj1𝑊)
5 pjdm2.k . . 3 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjdm 21592 . 2 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
7 eqid 2729 . . . . . 6 (+g𝑊) = (+g𝑊)
8 pjdm2.s . . . . . 6 = (LSSum‘𝑊)
9 eqid 2729 . . . . . 6 (0g𝑊) = (0g𝑊)
10 eqid 2729 . . . . . 6 (Cntz‘𝑊) = (Cntz‘𝑊)
11 phllmod 21515 . . . . . . . . 9 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1211adantr 480 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ LMod)
132lsssssubg 20840 . . . . . . . 8 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
1412, 13syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝐿 ⊆ (SubGrp‘𝑊))
15 simpr 484 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝐿)
1614, 15sseldd 3944 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ∈ (SubGrp‘𝑊))
171, 2lssss 20818 . . . . . . . 8 (𝑇𝐿𝑇𝑉)
181, 3, 2ocvlss 21557 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ( 𝑇) ∈ 𝐿)
1917, 18sylan2 593 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ 𝐿)
2014, 19sseldd 3944 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ (SubGrp‘𝑊))
213, 2, 9ocvin 21559 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇 ∩ ( 𝑇)) = {(0g𝑊)})
22 lmodabl 20791 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2312, 22syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ Abel)
2410, 23, 16, 20ablcntzd 19763 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ⊆ ((Cntz‘𝑊)‘( 𝑇)))
257, 8, 9, 10, 16, 20, 21, 24, 4pj1f 19603 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑇)
2617adantl 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝑉)
2725, 26fssd 6687 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉)
28 fdm 6679 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = (𝑇 ( 𝑇)))
2928eqcomd 2735 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → (𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)))
30 fdm 6679 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = 𝑉)
3130eqeq2d 2740 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → ((𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)) ↔ (𝑇 ( 𝑇)) = 𝑉))
3229, 31syl5ibcom 245 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → (𝑇 ( 𝑇)) = 𝑉))
33 feq2 6649 . . . . . 6 ((𝑇 ( 𝑇)) = 𝑉 → ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 ↔ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3433biimpcd 249 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇 ( 𝑇)) = 𝑉 → (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3532, 34impbid 212 . . . 4 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3627, 35syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3736pm5.32da 579 . 2 (𝑊 ∈ PreHil → ((𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉) ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
386, 37bitrid 283 1 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  SubGrpcsubg 19028  Cntzccntz 19223  LSSumclsm 19540  proj1cpj1 19541  Abelcabl 19687  LModclmod 20742  LSubSpclss 20813  PreHilcphl 21509  ocvcocv 21545  projcpj 21585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19121  df-cntz 19225  df-lsm 19542  df-pj1 19543  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20744  df-lss 20814  df-lmhm 20905  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-phl 21511  df-ocv 21548  df-pj 21588
This theorem is referenced by:  pjff  21597  pjf2  21599  pjfo  21600  pjcss  21601  ocvpj  21602  ishil2  21604  pjth2  25316
  Copyright terms: Public domain W3C validator