| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjdm2 | Structured version Visualization version GIF version | ||
| Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjdm2.v | ⊢ 𝑉 = (Base‘𝑊) |
| pjdm2.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| pjdm2.o | ⊢ ⊥ = (ocv‘𝑊) |
| pjdm2.s | ⊢ ⊕ = (LSSum‘𝑊) |
| pjdm2.k | ⊢ 𝐾 = (proj‘𝑊) |
| Ref | Expression |
|---|---|
| pjdm2 | ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjdm2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | pjdm2.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 3 | pjdm2.o | . . 3 ⊢ ⊥ = (ocv‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | pjdm2.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | pjdm 21614 | . 2 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 8 | pjdm2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 11 | phllmod 21537 | . . . . . . . . 9 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ LMod) |
| 13 | 2 | lsssssubg 20861 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ∈ 𝐿) | |
| 16 | 14, 15 | sseldd 3936 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 17 | 1, 2 | lssss 20839 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐿 → 𝑇 ⊆ 𝑉) |
| 18 | 1, 3, 2 | ocvlss 21579 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ( ⊥ ‘𝑇) ∈ 𝐿) |
| 19 | 17, 18 | sylan2 593 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ( ⊥ ‘𝑇) ∈ 𝐿) |
| 20 | 14, 19 | sseldd 3936 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ( ⊥ ‘𝑇) ∈ (SubGrp‘𝑊)) |
| 21 | 3, 2, 9 | ocvin 21581 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇 ∩ ( ⊥ ‘𝑇)) = {(0g‘𝑊)}) |
| 22 | lmodabl 20812 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 23 | 12, 22 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ Abel) |
| 24 | 10, 23, 16, 20 | ablcntzd 19736 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ⊆ ((Cntz‘𝑊)‘( ⊥ ‘𝑇))) |
| 25 | 7, 8, 9, 10, 16, 20, 21, 24, 4 | pj1f 19576 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑇) |
| 26 | 17 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → 𝑇 ⊆ 𝑉) |
| 27 | 25, 26 | fssd 6669 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉) |
| 28 | fdm 6661 | . . . . . . 7 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) = (𝑇 ⊕ ( ⊥ ‘𝑇))) | |
| 29 | 28 | eqcomd 2735 | . . . . . 6 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → (𝑇 ⊕ ( ⊥ ‘𝑇)) = dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇))) |
| 30 | fdm 6661 | . . . . . . 7 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) = 𝑉) | |
| 31 | 30 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → ((𝑇 ⊕ ( ⊥ ‘𝑇)) = dom (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)) ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
| 32 | 29, 31 | syl5ibcom 245 | . . . . 5 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 → (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
| 33 | feq2 6631 | . . . . . 6 ⊢ ((𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 ↔ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) | |
| 34 | 33 | biimpcd 249 | . . . . 5 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉 → (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉)) |
| 35 | 32, 34 | impbid 212 | . . . 4 ⊢ ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):(𝑇 ⊕ ( ⊥ ‘𝑇))⟶𝑉 → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
| 36 | 27, 35 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿) → ((𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉 ↔ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉)) |
| 37 | 36 | pm5.32da 579 | . 2 ⊢ (𝑊 ∈ PreHil → ((𝑇 ∈ 𝐿 ∧ (𝑇(proj1‘𝑊)( ⊥ ‘𝑇)):𝑉⟶𝑉) ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
| 38 | 6, 37 | bitrid 283 | 1 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ 𝐿 ∧ (𝑇 ⊕ ( ⊥ ‘𝑇)) = 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 SubGrpcsubg 18999 Cntzccntz 19194 LSSumclsm 19513 proj1cpj1 19514 Abelcabl 19660 LModclmod 20763 LSubSpclss 20834 PreHilcphl 21531 ocvcocv 21567 projcpj 21607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-ghm 19092 df-cntz 19196 df-lsm 19515 df-pj1 19516 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20765 df-lss 20835 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-phl 21533 df-ocv 21570 df-pj 21610 |
| This theorem is referenced by: pjff 21619 pjf2 21621 pjfo 21622 pjcss 21623 ocvpj 21624 ishil2 21626 pjth2 25338 |
| Copyright terms: Public domain | W3C validator |