MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm2 Structured version   Visualization version   GIF version

Theorem pjdm2 20828
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjdm2.v 𝑉 = (Base‘𝑊)
pjdm2.l 𝐿 = (LSubSp‘𝑊)
pjdm2.o = (ocv‘𝑊)
pjdm2.s = (LSSum‘𝑊)
pjdm2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm2 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))

Proof of Theorem pjdm2
StepHypRef Expression
1 pjdm2.v . . 3 𝑉 = (Base‘𝑊)
2 pjdm2.l . . 3 𝐿 = (LSubSp‘𝑊)
3 pjdm2.o . . 3 = (ocv‘𝑊)
4 eqid 2738 . . 3 (proj1𝑊) = (proj1𝑊)
5 pjdm2.k . . 3 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjdm 20824 . 2 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
7 eqid 2738 . . . . . 6 (+g𝑊) = (+g𝑊)
8 pjdm2.s . . . . . 6 = (LSSum‘𝑊)
9 eqid 2738 . . . . . 6 (0g𝑊) = (0g𝑊)
10 eqid 2738 . . . . . 6 (Cntz‘𝑊) = (Cntz‘𝑊)
11 phllmod 20747 . . . . . . . . 9 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1211adantr 480 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ LMod)
132lsssssubg 20135 . . . . . . . 8 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
1412, 13syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝐿 ⊆ (SubGrp‘𝑊))
15 simpr 484 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝐿)
1614, 15sseldd 3918 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ∈ (SubGrp‘𝑊))
171, 2lssss 20113 . . . . . . . 8 (𝑇𝐿𝑇𝑉)
181, 3, 2ocvlss 20789 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ( 𝑇) ∈ 𝐿)
1917, 18sylan2 592 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ 𝐿)
2014, 19sseldd 3918 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ( 𝑇) ∈ (SubGrp‘𝑊))
213, 2, 9ocvin 20791 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇 ∩ ( 𝑇)) = {(0g𝑊)})
22 lmodabl 20085 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2312, 22syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑊 ∈ Abel)
2410, 23, 16, 20ablcntzd 19373 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇 ⊆ ((Cntz‘𝑊)‘( 𝑇)))
257, 8, 9, 10, 16, 20, 21, 24, 4pj1f 19218 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑇)
2617adantl 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → 𝑇𝑉)
2725, 26fssd 6602 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → (𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉)
28 fdm 6593 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = (𝑇 ( 𝑇)))
2928eqcomd 2744 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → (𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)))
30 fdm 6593 . . . . . . 7 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → dom (𝑇(proj1𝑊)( 𝑇)) = 𝑉)
3130eqeq2d 2749 . . . . . 6 ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → ((𝑇 ( 𝑇)) = dom (𝑇(proj1𝑊)( 𝑇)) ↔ (𝑇 ( 𝑇)) = 𝑉))
3229, 31syl5ibcom 244 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 → (𝑇 ( 𝑇)) = 𝑉))
33 feq2 6566 . . . . . 6 ((𝑇 ( 𝑇)) = 𝑉 → ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 ↔ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3433biimpcd 248 . . . . 5 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇 ( 𝑇)) = 𝑉 → (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉))
3532, 34impbid 211 . . . 4 ((𝑇(proj1𝑊)( 𝑇)):(𝑇 ( 𝑇))⟶𝑉 → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3627, 35syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇𝐿) → ((𝑇(proj1𝑊)( 𝑇)):𝑉𝑉 ↔ (𝑇 ( 𝑇)) = 𝑉))
3736pm5.32da 578 . 2 (𝑊 ∈ PreHil → ((𝑇𝐿 ∧ (𝑇(proj1𝑊)( 𝑇)):𝑉𝑉) ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
386, 37syl5bb 282 1 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇 ( 𝑇)) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  SubGrpcsubg 18664  Cntzccntz 18836  LSSumclsm 19154  proj1cpj1 19155  Abelcabl 19302  LModclmod 20038  LSubSpclss 20108  PreHilcphl 20741  ocvcocv 20777  projcpj 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-pj1 19157  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-phl 20743  df-ocv 20780  df-pj 20820
This theorem is referenced by:  pjff  20829  pjf2  20831  pjfo  20832  pjcss  20833  ocvpj  20834  ishil2  20836  pjth2  24509
  Copyright terms: Public domain W3C validator