Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval0b | Structured version Visualization version GIF version |
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvval0b.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvval0b.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoidmvval0b.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidmvval0b | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6812 | . . . . 5 ⊢ (𝑋 = ∅ → (𝐿‘𝑋) = (𝐿‘∅)) | |
2 | 1 | oveqd 7334 | . . . 4 ⊢ (𝑋 = ∅ → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
4 | hoidmvval0b.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
5 | hoidmvval0b.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
7 | feq2 6620 | . . . . . 6 ⊢ (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) | |
8 | 7 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
9 | 6, 8 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:∅⟶ℝ) |
10 | 4, 9, 9 | hoidmv0val 44372 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘∅)𝐴) = 0) |
11 | 3, 10 | eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
12 | nfv 1916 | . . 3 ⊢ Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) | |
13 | hoidmvval0b.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
15 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
16 | neqne 2949 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
17 | n0 4291 | . . . . . . 7 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝑋) | |
18 | 16, 17 | sylib 217 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → ∃𝑗 𝑗 ∈ 𝑋) |
19 | 18 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 𝑗 ∈ 𝑋) |
20 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
21 | 5 | ffvelcdmda 7001 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
22 | eqidd 2738 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) = (𝐴‘𝑗)) | |
23 | 21, 22 | eqled 11158 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
24 | 20, 23 | jca 512 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
25 | 24 | ex 413 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
26 | 25 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
27 | 26 | eximdv 1919 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∃𝑗 𝑗 ∈ 𝑋 → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
28 | 19, 27 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
29 | df-rex 3072 | . . . 4 ⊢ (∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗) ↔ ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) | |
30 | 28, 29 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
31 | 12, 4, 14, 15, 15, 30 | hoidmvval0 44376 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
32 | 11, 31 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 ∅c0 4267 ifcif 4471 class class class wbr 5087 ↦ cmpt 5170 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ∈ cmpo 7319 ↑m cmap 8665 Fincfn 8783 ℝcr 10950 0cc0 10951 ≤ cle 11090 [,)cico 13161 ∏cprod 15694 volcvol 24710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-2o 8347 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fi 9247 df-sup 9278 df-inf 9279 df-oi 9346 df-dju 9737 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-ioo 13163 df-ico 13165 df-icc 13166 df-fz 13320 df-fzo 13463 df-fl 13592 df-seq 13802 df-exp 13863 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-rlim 15277 df-sum 15477 df-prod 15695 df-rest 17210 df-topgen 17231 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-top 22126 df-topon 22143 df-bases 22179 df-cmp 22621 df-ovol 24711 df-vol 24712 |
This theorem is referenced by: hoidmvlelem2 44385 |
Copyright terms: Public domain | W3C validator |