| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval0b | Structured version Visualization version GIF version | ||
| Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hoidmvval0b.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| hoidmvval0b.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoidmvval0b.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoidmvval0b | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (𝑋 = ∅ → (𝐿‘𝑋) = (𝐿‘∅)) | |
| 2 | 1 | oveqd 7363 | . . . 4 ⊢ (𝑋 = ∅ → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
| 4 | hoidmvval0b.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 5 | hoidmvval0b.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 7 | feq2 6630 | . . . . . 6 ⊢ (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:∅⟶ℝ) |
| 10 | 4, 9, 9 | hoidmv0val 46691 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘∅)𝐴) = 0) |
| 11 | 3, 10 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| 12 | nfv 1915 | . . 3 ⊢ Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) | |
| 13 | hoidmvval0b.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 15 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 16 | neqne 2936 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 17 | n0 4300 | . . . . . . 7 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝑋) | |
| 18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → ∃𝑗 𝑗 ∈ 𝑋) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 𝑗 ∈ 𝑋) |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 21 | 5 | ffvelcdmda 7017 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
| 22 | eqidd 2732 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) = (𝐴‘𝑗)) | |
| 23 | 21, 22 | eqled 11216 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
| 24 | 20, 23 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
| 25 | 24 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 27 | 26 | eximdv 1918 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∃𝑗 𝑗 ∈ 𝑋 → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 28 | 19, 27 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
| 29 | df-rex 3057 | . . . 4 ⊢ (∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗) ↔ ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) | |
| 30 | 28, 29 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
| 31 | 12, 4, 14, 15, 15, 30 | hoidmvval0 46695 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| 32 | 11, 31 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4280 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Fincfn 8869 ℝcr 11005 0cc0 11006 ≤ cle 11147 [,)cico 13247 ∏cprod 15810 volcvol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-cmp 23302 df-ovol 25392 df-vol 25393 |
| This theorem is referenced by: hoidmvlelem2 46704 |
| Copyright terms: Public domain | W3C validator |