| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval0b | Structured version Visualization version GIF version | ||
| Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hoidmvval0b.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| hoidmvval0b.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoidmvval0b.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoidmvval0b | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (𝑋 = ∅ → (𝐿‘𝑋) = (𝐿‘∅)) | |
| 2 | 1 | oveqd 7366 | . . . 4 ⊢ (𝑋 = ∅ → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = (𝐴(𝐿‘∅)𝐴)) |
| 4 | hoidmvval0b.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 5 | hoidmvval0b.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 7 | feq2 6631 | . . . . . 6 ⊢ (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:∅⟶ℝ) |
| 10 | 4, 9, 9 | hoidmv0val 46568 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘∅)𝐴) = 0) |
| 11 | 3, 10 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| 12 | nfv 1914 | . . 3 ⊢ Ⅎ𝑗(𝜑 ∧ ¬ 𝑋 = ∅) | |
| 13 | hoidmvval0b.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 15 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
| 16 | neqne 2933 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 17 | n0 4304 | . . . . . . 7 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝑋) | |
| 18 | 16, 17 | sylib 218 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → ∃𝑗 𝑗 ∈ 𝑋) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 𝑗 ∈ 𝑋) |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 21 | 5 | ffvelcdmda 7018 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
| 22 | eqidd 2730 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) = (𝐴‘𝑗)) | |
| 23 | 21, 22 | eqled 11219 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
| 24 | 20, 23 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
| 25 | 24 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝑗 ∈ 𝑋 → (𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 27 | 26 | eximdv 1917 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (∃𝑗 𝑗 ∈ 𝑋 → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗)))) |
| 28 | 19, 27 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) |
| 29 | df-rex 3054 | . . . 4 ⊢ (∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗) ↔ ∃𝑗(𝑗 ∈ 𝑋 ∧ (𝐴‘𝑗) ≤ (𝐴‘𝑗))) | |
| 30 | 28, 29 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐴‘𝑗)) |
| 31 | 12, 4, 14, 15, 15, 30 | hoidmvval0 46572 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| 32 | 11, 31 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4284 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ↑m cmap 8753 Fincfn 8872 ℝcr 11008 0cc0 11009 ≤ cle 11150 [,)cico 13250 ∏cprod 15810 volcvol 25362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cmp 23272 df-ovol 25363 df-vol 25364 |
| This theorem is referenced by: hoidmvlelem2 46581 |
| Copyright terms: Public domain | W3C validator |