![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval0b | Structured version Visualization version GIF version |
Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvval0b.l | β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) |
hoidmvval0b.x | β’ (π β π β Fin) |
hoidmvval0b.a | β’ (π β π΄:πβΆβ) |
Ref | Expression |
---|---|
hoidmvval0b | β’ (π β (π΄(πΏβπ)π΄) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . . 5 β’ (π = β β (πΏβπ) = (πΏββ )) | |
2 | 1 | oveqd 7428 | . . . 4 β’ (π = β β (π΄(πΏβπ)π΄) = (π΄(πΏββ )π΄)) |
3 | 2 | adantl 480 | . . 3 β’ ((π β§ π = β ) β (π΄(πΏβπ)π΄) = (π΄(πΏββ )π΄)) |
4 | hoidmvval0b.l | . . . 4 β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) | |
5 | hoidmvval0b.a | . . . . . 6 β’ (π β π΄:πβΆβ) | |
6 | 5 | adantr 479 | . . . . 5 β’ ((π β§ π = β ) β π΄:πβΆβ) |
7 | feq2 6698 | . . . . . 6 β’ (π = β β (π΄:πβΆβ β π΄:β βΆβ)) | |
8 | 7 | adantl 480 | . . . . 5 β’ ((π β§ π = β ) β (π΄:πβΆβ β π΄:β βΆβ)) |
9 | 6, 8 | mpbid 231 | . . . 4 β’ ((π β§ π = β ) β π΄:β βΆβ) |
10 | 4, 9, 9 | hoidmv0val 45597 | . . 3 β’ ((π β§ π = β ) β (π΄(πΏββ )π΄) = 0) |
11 | 3, 10 | eqtrd 2770 | . 2 β’ ((π β§ π = β ) β (π΄(πΏβπ)π΄) = 0) |
12 | nfv 1915 | . . 3 β’ β²π(π β§ Β¬ π = β ) | |
13 | hoidmvval0b.x | . . . 4 β’ (π β π β Fin) | |
14 | 13 | adantr 479 | . . 3 β’ ((π β§ Β¬ π = β ) β π β Fin) |
15 | 5 | adantr 479 | . . 3 β’ ((π β§ Β¬ π = β ) β π΄:πβΆβ) |
16 | neqne 2946 | . . . . . . 7 β’ (Β¬ π = β β π β β ) | |
17 | n0 4345 | . . . . . . 7 β’ (π β β β βπ π β π) | |
18 | 16, 17 | sylib 217 | . . . . . 6 β’ (Β¬ π = β β βπ π β π) |
19 | 18 | adantl 480 | . . . . 5 β’ ((π β§ Β¬ π = β ) β βπ π β π) |
20 | simpr 483 | . . . . . . . . 9 β’ ((π β§ π β π) β π β π) | |
21 | 5 | ffvelcdmda 7085 | . . . . . . . . . 10 β’ ((π β§ π β π) β (π΄βπ) β β) |
22 | eqidd 2731 | . . . . . . . . . 10 β’ ((π β§ π β π) β (π΄βπ) = (π΄βπ)) | |
23 | 21, 22 | eqled 11321 | . . . . . . . . 9 β’ ((π β§ π β π) β (π΄βπ) β€ (π΄βπ)) |
24 | 20, 23 | jca 510 | . . . . . . . 8 β’ ((π β§ π β π) β (π β π β§ (π΄βπ) β€ (π΄βπ))) |
25 | 24 | ex 411 | . . . . . . 7 β’ (π β (π β π β (π β π β§ (π΄βπ) β€ (π΄βπ)))) |
26 | 25 | adantr 479 | . . . . . 6 β’ ((π β§ Β¬ π = β ) β (π β π β (π β π β§ (π΄βπ) β€ (π΄βπ)))) |
27 | 26 | eximdv 1918 | . . . . 5 β’ ((π β§ Β¬ π = β ) β (βπ π β π β βπ(π β π β§ (π΄βπ) β€ (π΄βπ)))) |
28 | 19, 27 | mpd 15 | . . . 4 β’ ((π β§ Β¬ π = β ) β βπ(π β π β§ (π΄βπ) β€ (π΄βπ))) |
29 | df-rex 3069 | . . . 4 β’ (βπ β π (π΄βπ) β€ (π΄βπ) β βπ(π β π β§ (π΄βπ) β€ (π΄βπ))) | |
30 | 28, 29 | sylibr 233 | . . 3 β’ ((π β§ Β¬ π = β ) β βπ β π (π΄βπ) β€ (π΄βπ)) |
31 | 12, 4, 14, 15, 15, 30 | hoidmvval0 45601 | . 2 β’ ((π β§ Β¬ π = β ) β (π΄(πΏβπ)π΄) = 0) |
32 | 11, 31 | pm2.61dan 809 | 1 β’ (π β (π΄(πΏβπ)π΄) = 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1539 βwex 1779 β wcel 2104 β wne 2938 βwrex 3068 β c0 4321 ifcif 4527 class class class wbr 5147 β¦ cmpt 5230 βΆwf 6538 βcfv 6542 (class class class)co 7411 β cmpo 7413 βm cmap 8822 Fincfn 8941 βcr 11111 0cc0 11112 β€ cle 11253 [,)cico 13330 βcprod 15853 volcvol 25212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-prod 15854 df-rest 17372 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-top 22616 df-topon 22633 df-bases 22669 df-cmp 23111 df-ovol 25213 df-vol 25214 |
This theorem is referenced by: hoidmvlelem2 45610 |
Copyright terms: Public domain | W3C validator |