Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ac6sg | Structured version Visualization version GIF version |
Description: ac6s 10241 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
ac6sg.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6sg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3341 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
2 | feq2 6580 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑓:𝑧⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) | |
3 | raleq 3341 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | |
4 | 2, 3 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 4 | exbidv 1928 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
6 | 1, 5 | imbi12d 345 | . 2 ⊢ (𝑧 = 𝐴 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)))) |
7 | vex 3435 | . . 3 ⊢ 𝑧 ∈ V | |
8 | ac6sg.1 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | ac6s 10241 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) |
10 | 6, 9 | vtoclg 3504 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 ⟶wf 6428 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-reg 9329 ax-inf2 9377 ax-ac2 10220 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-en 8717 df-r1 9523 df-rank 9524 df-card 9698 df-ac 9873 |
This theorem is referenced by: acsmapd 18270 foresf1o 30846 elrspunidl 31602 reff 31785 cmpcref 31796 omssubadd 32263 nlpfvineqsn 35576 ac6gf 35886 |
Copyright terms: Public domain | W3C validator |