MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sg Structured version   Visualization version   GIF version

Theorem ac6sg 10448
Description: ac6s 10444 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.)
Hypothesis
Ref Expression
ac6sg.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sg (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6sg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 raleq 3298 . . 3 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
2 feq2 6670 . . . . 5 (𝑧 = 𝐴 → (𝑓:𝑧𝐵𝑓:𝐴𝐵))
3 raleq 3298 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 𝜓 ↔ ∀𝑥𝐴 𝜓))
42, 3anbi12d 632 . . . 4 (𝑧 = 𝐴 → ((𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
54exbidv 1921 . . 3 (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
61, 5imbi12d 344 . 2 (𝑧 = 𝐴 → ((∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
7 vex 3454 . . 3 𝑧 ∈ V
8 ac6sg.1 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
97, 8ac6s 10444 . 2 (∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓))
106, 9vtoclg 3523 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-en 8922  df-r1 9724  df-rank 9725  df-card 9899  df-ac 10076
This theorem is referenced by:  acsmapd  18520  foresf1o  32440  ac6mapd  32556  elrspunidl  33406  reff  33836  cmpcref  33847  omssubadd  34298  nlpfvineqsn  37404  ac6gf  37733
  Copyright terms: Public domain W3C validator