![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6sg | Structured version Visualization version GIF version |
Description: ac6s 10476 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
ac6sg.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6sg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3314 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
2 | feq2 6690 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑓:𝑧⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) | |
3 | raleq 3314 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | |
4 | 2, 3 | anbi12d 630 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 4 | exbidv 1916 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
6 | 1, 5 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)))) |
7 | vex 3470 | . . 3 ⊢ 𝑧 ∈ V | |
8 | ac6sg.1 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | ac6s 10476 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) |
10 | 6, 9 | vtoclg 3535 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ⟶wf 6530 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-reg 9584 ax-inf2 9633 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-en 8937 df-r1 9756 df-rank 9757 df-card 9931 df-ac 10108 |
This theorem is referenced by: acsmapd 18515 foresf1o 32236 elrspunidl 33041 reff 33338 cmpcref 33349 omssubadd 33818 nlpfvineqsn 36790 ac6gf 37103 |
Copyright terms: Public domain | W3C validator |