| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac6sg | Structured version Visualization version GIF version | ||
| Description: ac6s 10444 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| ac6sg.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ac6sg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3298 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
| 2 | feq2 6670 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑓:𝑧⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) | |
| 3 | raleq 3298 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 5 | 4 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 6 | 1, 5 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)))) |
| 7 | vex 3454 | . . 3 ⊢ 𝑧 ∈ V | |
| 8 | ac6sg.1 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | ac6s 10444 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) |
| 10 | 6, 9 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-en 8922 df-r1 9724 df-rank 9725 df-card 9899 df-ac 10076 |
| This theorem is referenced by: acsmapd 18520 foresf1o 32440 ac6mapd 32556 elrspunidl 33406 reff 33836 cmpcref 33847 omssubadd 34298 nlpfvineqsn 37404 ac6gf 37733 |
| Copyright terms: Public domain | W3C validator |