![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6sg | Structured version Visualization version GIF version |
Description: ac6s 10478 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
ac6sg.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6sg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3322 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
2 | feq2 6699 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑓:𝑧⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) | |
3 | raleq 3322 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | |
4 | 2, 3 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 4 | exbidv 1924 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
6 | 1, 5 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)))) |
7 | vex 3478 | . . 3 ⊢ 𝑧 ∈ V | |
8 | ac6sg.1 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | ac6s 10478 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) |
10 | 6, 9 | vtoclg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-en 8939 df-r1 9758 df-rank 9759 df-card 9933 df-ac 10110 |
This theorem is referenced by: acsmapd 18506 foresf1o 31737 elrspunidl 32541 reff 32814 cmpcref 32825 omssubadd 33294 nlpfvineqsn 36285 ac6gf 36595 |
Copyright terms: Public domain | W3C validator |