MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sg Structured version   Visualization version   GIF version

Theorem ac6sg 10441
Description: ac6s 10437 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.)
Hypothesis
Ref Expression
ac6sg.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sg (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6sg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 raleq 3296 . . 3 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
2 feq2 6667 . . . . 5 (𝑧 = 𝐴 → (𝑓:𝑧𝐵𝑓:𝐴𝐵))
3 raleq 3296 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 𝜓 ↔ ∀𝑥𝐴 𝜓))
42, 3anbi12d 632 . . . 4 (𝑧 = 𝐴 → ((𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
54exbidv 1921 . . 3 (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
61, 5imbi12d 344 . 2 (𝑧 = 𝐴 → ((∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
7 vex 3451 . . 3 𝑧 ∈ V
8 ac6sg.1 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
97, 8ac6s 10437 . 2 (∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓))
106, 9vtoclg 3520 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-en 8919  df-r1 9717  df-rank 9718  df-card 9892  df-ac 10069
This theorem is referenced by:  acsmapd  18513  foresf1o  32433  ac6mapd  32549  elrspunidl  33399  reff  33829  cmpcref  33840  omssubadd  34291  nlpfvineqsn  37397  ac6gf  37726
  Copyright terms: Public domain W3C validator