| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac6sg | Structured version Visualization version GIF version | ||
| Description: ac6s 10498 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| ac6sg.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ac6sg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3302 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
| 2 | feq2 6687 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑓:𝑧⟶𝐵 ↔ 𝑓:𝐴⟶𝐵)) | |
| 3 | raleq 3302 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 5 | 4 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 6 | 1, 5 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)))) |
| 7 | vex 3463 | . . 3 ⊢ 𝑧 ∈ V | |
| 8 | ac6sg.1 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | ac6s 10498 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝑧⟶𝐵 ∧ ∀𝑥 ∈ 𝑧 𝜓)) |
| 10 | 6, 9 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-en 8960 df-r1 9778 df-rank 9779 df-card 9953 df-ac 10130 |
| This theorem is referenced by: acsmapd 18564 foresf1o 32485 ac6mapd 32603 elrspunidl 33443 reff 33870 cmpcref 33881 omssubadd 34332 nlpfvineqsn 37427 ac6gf 37756 |
| Copyright terms: Public domain | W3C validator |