Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elno2 | Structured version Visualization version GIF version |
Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
Ref | Expression |
---|---|
elno2 | ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nofun 33779 | . . 3 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
2 | nodmon 33780 | . . 3 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
3 | norn 33781 | . . 3 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝐴 ∈ No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
5 | simp2 1135 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → dom 𝐴 ∈ On) | |
6 | simpl 482 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴) | |
7 | 6 | funfnd 6449 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴) |
8 | 7 | anim1i 614 | . . . . . 6 ⊢ (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
9 | 8 | 3impa 1108 | . . . . 5 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
10 | df-f 6422 | . . . . 5 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴:dom 𝐴⟶{1o, 2o}) |
12 | feq2 6566 | . . . . 5 ⊢ (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1o, 2o} ↔ 𝐴:dom 𝐴⟶{1o, 2o})) | |
13 | 12 | rspcev 3552 | . . . 4 ⊢ ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
14 | 5, 11, 13 | syl2anc 583 | . . 3 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
15 | elno 33776 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴 ∈ No ) |
17 | 4, 16 | impbii 208 | 1 ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 {cpr 4560 dom cdm 5580 ran crn 5581 Oncon0 6251 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 1oc1o 8260 2oc2o 8261 No csur 33770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-no 33773 |
This theorem is referenced by: elno3 33785 noextend 33796 noextendseq 33797 nosupno 33833 noinfno 33848 |
Copyright terms: Public domain | W3C validator |