MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno2 Structured version   Visualization version   GIF version

Theorem elno2 27618
Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
elno2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))

Proof of Theorem elno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27613 . . 3 (𝐴 No → Fun 𝐴)
2 nodmon 27614 . . 3 (𝐴 No → dom 𝐴 ∈ On)
3 norn 27615 . . 3 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
41, 2, 33jca 1128 . 2 (𝐴 No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
5 simp2 1137 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → dom 𝐴 ∈ On)
6 simpl 482 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴)
76funfnd 6567 . . . . . . 7 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴)
87anim1i 615 . . . . . 6 (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
983impa 1109 . . . . 5 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
10 df-f 6535 . . . . 5 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
119, 10sylibr 234 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴:dom 𝐴⟶{1o, 2o})
12 feq2 6687 . . . . 5 (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1o, 2o} ↔ 𝐴:dom 𝐴⟶{1o, 2o}))
1312rspcev 3601 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
145, 11, 13syl2anc 584 . . 3 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
15 elno 27609 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
1614, 15sylibr 234 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴 No )
174, 16impbii 209 1 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2108  wrex 3060  wss 3926  {cpr 4603  dom cdm 5654  ran crn 5655  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  wf 6527  1oc1o 8473  2oc2o 8474   No csur 27603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-no 27606
This theorem is referenced by:  elno3  27619  noextend  27630  noextendseq  27631  nosupno  27667  noinfno  27682  onnog  43453
  Copyright terms: Public domain W3C validator