MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno2 Structured version   Visualization version   GIF version

Theorem elno2 27699
Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
elno2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))

Proof of Theorem elno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27694 . . 3 (𝐴 No → Fun 𝐴)
2 nodmon 27695 . . 3 (𝐴 No → dom 𝐴 ∈ On)
3 norn 27696 . . 3 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
41, 2, 33jca 1129 . 2 (𝐴 No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
5 simp2 1138 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → dom 𝐴 ∈ On)
6 simpl 482 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴)
76funfnd 6597 . . . . . . 7 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴)
87anim1i 615 . . . . . 6 (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
983impa 1110 . . . . 5 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
10 df-f 6565 . . . . 5 (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}))
119, 10sylibr 234 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴:dom 𝐴⟶{1o, 2o})
12 feq2 6717 . . . . 5 (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1o, 2o} ↔ 𝐴:dom 𝐴⟶{1o, 2o}))
1312rspcev 3622 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
145, 11, 13syl2anc 584 . . 3 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
15 elno 27690 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
1614, 15sylibr 234 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴 No )
174, 16impbii 209 1 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087  wcel 2108  wrex 3070  wss 3951  {cpr 4628  dom cdm 5685  ran crn 5686  Oncon0 6384  Fun wfun 6555   Fn wfn 6556  wf 6557  1oc1o 8499  2oc2o 8500   No csur 27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-fun 6563  df-fn 6564  df-f 6565  df-no 27687
This theorem is referenced by:  elno3  27700  noextend  27711  noextendseq  27712  nosupno  27748  noinfno  27763  onnog  43442
  Copyright terms: Public domain W3C validator