![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elno2 | Structured version Visualization version GIF version |
Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
Ref | Expression |
---|---|
elno2 | ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nofun 27152 | . . 3 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
2 | nodmon 27153 | . . 3 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
3 | norn 27154 | . . 3 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
4 | 1, 2, 3 | 3jca 1129 | . 2 ⊢ (𝐴 ∈ No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
5 | simp2 1138 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → dom 𝐴 ∈ On) | |
6 | simpl 484 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴) | |
7 | 6 | funfnd 6580 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴) |
8 | 7 | anim1i 616 | . . . . . 6 ⊢ (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
9 | 8 | 3impa 1111 | . . . . 5 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
10 | df-f 6548 | . . . . 5 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴:dom 𝐴⟶{1o, 2o}) |
12 | feq2 6700 | . . . . 5 ⊢ (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1o, 2o} ↔ 𝐴:dom 𝐴⟶{1o, 2o})) | |
13 | 12 | rspcev 3613 | . . . 4 ⊢ ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
14 | 5, 11, 13 | syl2anc 585 | . . 3 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
15 | elno 27149 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴 ∈ No ) |
17 | 4, 16 | impbii 208 | 1 ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ∃wrex 3071 ⊆ wss 3949 {cpr 4631 dom cdm 5677 ran crn 5678 Oncon0 6365 Fun wfun 6538 Fn wfn 6539 ⟶wf 6540 1oc1o 8459 2oc2o 8460 No csur 27143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-no 27146 |
This theorem is referenced by: elno3 27158 noextend 27169 noextendseq 27170 nosupno 27206 noinfno 27221 onnog 42180 |
Copyright terms: Public domain | W3C validator |