| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elno2 | Structured version Visualization version GIF version | ||
| Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
| Ref | Expression |
|---|---|
| elno2 | ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nofun 27568 | . . 3 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
| 2 | nodmon 27569 | . . 3 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 3 | norn 27570 | . . 3 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝐴 ∈ No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
| 5 | simp2 1137 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → dom 𝐴 ∈ On) | |
| 6 | simpl 482 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴) | |
| 7 | 6 | funfnd 6550 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴) |
| 8 | 7 | anim1i 615 | . . . . . 6 ⊢ (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
| 9 | 8 | 3impa 1109 | . . . . 5 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) |
| 10 | df-f 6518 | . . . . 5 ⊢ (𝐴:dom 𝐴⟶{1o, 2o} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o})) | |
| 11 | 9, 10 | sylibr 234 | . . . 4 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴:dom 𝐴⟶{1o, 2o}) |
| 12 | feq2 6670 | . . . . 5 ⊢ (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1o, 2o} ↔ 𝐴:dom 𝐴⟶{1o, 2o})) | |
| 13 | 12 | rspcev 3591 | . . . 4 ⊢ ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
| 14 | 5, 11, 13 | syl2anc 584 | . . 3 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
| 15 | elno 27564 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o}) → 𝐴 ∈ No ) |
| 17 | 4, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 {cpr 4594 dom cdm 5641 ran crn 5642 Oncon0 6335 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 1oc1o 8430 2oc2o 8431 No csur 27558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-no 27561 |
| This theorem is referenced by: elno3 27574 noextend 27585 noextendseq 27586 nosupno 27622 noinfno 27637 onnog 43425 |
| Copyright terms: Public domain | W3C validator |