| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmeu | Structured version Visualization version GIF version | ||
| Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| fdmeu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu 6718 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹) | |
| 2 | ffn 6670 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 5 | fnopfvb 6894 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 7 | 6 | reubidva 3367 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦 ↔ ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 〈cop 4591 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: uspgriedgedg 29079 |
| Copyright terms: Public domain | W3C validator |