MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmeu Structured version   Visualization version   GIF version

Theorem fdmeu 6917
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
Assertion
Ref Expression
fdmeu ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem fdmeu
StepHypRef Expression
1 feu 6736 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹)
2 ffn 6688 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
32anim1i 615 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹 Fn 𝐴𝑋𝐴))
43adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → (𝐹 Fn 𝐴𝑋𝐴))
5 fnopfvb 6912 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
64, 5syl 17 . . 3 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
76reubidva 3370 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (∃!𝑦𝐵 (𝐹𝑋) = 𝑦 ↔ ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹))
81, 7mpbird 257 1 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3352  cop 4595   Fn wfn 6506  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  uspgriedgedg  29103
  Copyright terms: Public domain W3C validator