| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmeu | Structured version Visualization version GIF version | ||
| Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| fdmeu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu 6707 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹) | |
| 2 | ffn 6659 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 5 | fnopfvb 6882 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 7 | 6 | reubidva 3361 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦 ↔ ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!wreu 3345 〈cop 4583 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: uspgriedgedg 29175 |
| Copyright terms: Public domain | W3C validator |