MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmeu Structured version   Visualization version   GIF version

Theorem fdmeu 6887
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
Assertion
Ref Expression
fdmeu ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem fdmeu
StepHypRef Expression
1 feu 6707 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹)
2 ffn 6659 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
32anim1i 615 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹 Fn 𝐴𝑋𝐴))
43adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → (𝐹 Fn 𝐴𝑋𝐴))
5 fnopfvb 6882 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
64, 5syl 17 . . 3 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
76reubidva 3361 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (∃!𝑦𝐵 (𝐹𝑋) = 𝑦 ↔ ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹))
81, 7mpbird 257 1 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  ∃!wreu 3345  cop 4583   Fn wfn 6484  wf 6485  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  uspgriedgedg  29175
  Copyright terms: Public domain W3C validator