| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmeu | Structured version Visualization version GIF version | ||
| Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| fdmeu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu 6764 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹) | |
| 2 | ffn 6716 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | anim1i 615 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 5 | fnopfvb 6940 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 7 | 6 | reubidva 3379 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦 ↔ ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃!wreu 3361 〈cop 4612 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: uspgriedgedg 29122 |
| Copyright terms: Public domain | W3C validator |