| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ffvbr | Structured version Visualization version GIF version | ||
| Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| ffvbr | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋𝐹(𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6656 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → Fun 𝐹) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 4 | 1 | fdmd 6662 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → dom 𝐹 = 𝐴) |
| 5 | 3, 4 | eleqtrrd 2831 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ dom 𝐹) |
| 6 | funfvbrb 6985 | . . 3 ⊢ (Fun 𝐹 → (𝑋 ∈ dom 𝐹 ↔ 𝑋𝐹(𝐹‘𝑋))) | |
| 7 | 6 | biimpa 476 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → 𝑋𝐹(𝐹‘𝑋)) |
| 8 | 2, 5, 7 | syl2anc 584 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋𝐹(𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 Fun wfun 6476 ⟶wf 6478 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 |
| This theorem is referenced by: xpco2 48851 |
| Copyright terms: Public domain | W3C validator |