Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffvbr Structured version   Visualization version   GIF version

Theorem ffvbr 48834
Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025.)
Assertion
Ref Expression
ffvbr ((𝐹:𝐴𝐵𝑋𝐴) → 𝑋𝐹(𝐹𝑋))

Proof of Theorem ffvbr
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → 𝐹:𝐴𝐵)
21ffund 6694 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → Fun 𝐹)
3 simpr 484 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → 𝑋𝐴)
41fdmd 6700 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → dom 𝐹 = 𝐴)
53, 4eleqtrrd 2832 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → 𝑋 ∈ dom 𝐹)
6 funfvbrb 7025 . . 3 (Fun 𝐹 → (𝑋 ∈ dom 𝐹𝑋𝐹(𝐹𝑋)))
76biimpa 476 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → 𝑋𝐹(𝐹𝑋))
82, 5, 7syl2anc 584 1 ((𝐹:𝐴𝐵𝑋𝐴) → 𝑋𝐹(𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5109  dom cdm 5640  Fun wfun 6507  wf 6509  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521
This theorem is referenced by:  xpco2  48835
  Copyright terms: Public domain W3C validator