| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 7004 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 2 | df-br 5103 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
| 4 | funrel 6517 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | releldm 5897 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
| 7 | 3, 6 | impbida 800 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fmptco 7083 fpwwe2lem12 10571 fpwwe2 10572 climdm 15496 invco 17713 ffthiso 17873 fuciso 17920 setciso 18033 catciso 18053 rngciso 20558 ringciso 20592 lmcau 25246 dvcnp 25853 dvadd 25876 dvmul 25877 dvaddf 25878 dvmulf 25879 dvco 25884 dvcof 25885 dvcjbr 25886 dvcnvlem 25913 dvferm1 25922 dvferm2 25924 ulmdm 26335 ulmdvlem3 26344 minvecolem4a 30856 hlimf 31216 hhsscms 31257 occllem 31282 occl 31283 chscllem4 31619 fmptcof2 32631 heiborlem9 37806 bfplem1 37809 iscard4 43515 xlimdm 45848 rngcisoALTV 48258 ringcisoALTV 48292 ffvbr 48837 |
| Copyright terms: Public domain | W3C validator |