| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 7004 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 2 | df-br 5103 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
| 4 | funrel 6517 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | releldm 5897 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
| 7 | 3, 6 | impbida 800 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fmptco 7083 fpwwe2lem12 10571 fpwwe2 10572 climdm 15496 invco 17709 ffthiso 17869 fuciso 17916 setciso 18029 catciso 18049 rngciso 20523 ringciso 20557 lmcau 25189 dvcnp 25796 dvadd 25819 dvmul 25820 dvaddf 25821 dvmulf 25822 dvco 25827 dvcof 25828 dvcjbr 25829 dvcnvlem 25856 dvferm1 25865 dvferm2 25867 ulmdm 26278 ulmdvlem3 26287 minvecolem4a 30779 hlimf 31139 hhsscms 31180 occllem 31205 occl 31206 chscllem4 31542 fmptcof2 32554 heiborlem9 37786 bfplem1 37789 iscard4 43495 xlimdm 45828 rngcisoALTV 48238 ringcisoALTV 48272 ffvbr 48817 |
| Copyright terms: Public domain | W3C validator |