MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvbrb Structured version   Visualization version   GIF version

Theorem funfvbrb 6984
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 6983 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 df-br 5090 . . 3 (𝐴𝐹(𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2sylibr 234 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹𝐴))
4 funrel 6498 . . 3 (Fun 𝐹 → Rel 𝐹)
5 releldm 5883 . . 3 ((Rel 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
64, 5sylan 580 . 2 ((Fun 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
73, 6impbida 800 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  cop 4579   class class class wbr 5089  dom cdm 5614  Rel wrel 5619  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  fmptco  7062  fpwwe2lem12  10533  fpwwe2  10534  climdm  15461  invco  17678  ffthiso  17838  fuciso  17885  setciso  17998  catciso  18018  rngciso  20553  ringciso  20587  lmcau  25240  dvcnp  25847  dvadd  25870  dvmul  25871  dvaddf  25872  dvmulf  25873  dvco  25878  dvcof  25879  dvcjbr  25880  dvcnvlem  25907  dvferm1  25916  dvferm2  25918  ulmdm  26329  ulmdvlem3  26338  minvecolem4a  30857  hlimf  31217  hhsscms  31258  occllem  31283  occl  31284  chscllem4  31620  fmptcof2  32639  heiborlem9  37869  bfplem1  37872  iscard4  43636  xlimdm  45965  rngcisoALTV  48387  ringcisoALTV  48421  ffvbr  48966
  Copyright terms: Public domain W3C validator