MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvbrb Structured version   Visualization version   GIF version

Theorem funfvbrb 7052
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 7051 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 df-br 5149 . . 3 (𝐴𝐹(𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2sylibr 233 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹𝐴))
4 funrel 6565 . . 3 (Fun 𝐹 → Rel 𝐹)
5 releldm 5943 . . 3 ((Rel 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
64, 5sylan 580 . 2 ((Fun 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
73, 6impbida 799 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  cop 4634   class class class wbr 5148  dom cdm 5676  Rel wrel 5681  Fun wfun 6537  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  fmptco  7129  fpwwe2lem12  10639  fpwwe2  10640  climdm  15502  invco  17722  ffthiso  17884  fuciso  17932  setciso  18045  catciso  18065  lmcau  25054  dvcnp  25660  dvadd  25681  dvmul  25682  dvaddf  25683  dvmulf  25684  dvco  25688  dvcof  25689  dvcjbr  25690  dvcnvlem  25717  dvferm1  25726  dvferm2  25728  ulmdm  26129  ulmdvlem3  26138  minvecolem4a  30385  hlimf  30745  hhsscms  30786  occllem  30811  occl  30812  chscllem4  31148  fmptcof2  32137  heiborlem9  36990  bfplem1  36993  iscard4  42586  xlimdm  44872  rngciso  46969  rngcisoALTV  46981  ringciso  47020  ringcisoALTV  47044
  Copyright terms: Public domain W3C validator