Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 6924 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | df-br 5080 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
4 | funrel 6449 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | releldm 5852 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
7 | 3, 6 | impbida 798 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 〈cop 4573 class class class wbr 5079 dom cdm 5590 Rel wrel 5595 Fun wfun 6426 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 |
This theorem is referenced by: fmptco 6998 fpwwe2lem12 10399 fpwwe2 10400 climdm 15261 invco 17481 ffthiso 17643 fuciso 17691 setciso 17804 catciso 17824 lmcau 24475 dvcnp 25081 dvadd 25102 dvmul 25103 dvaddf 25104 dvmulf 25105 dvco 25109 dvcof 25110 dvcjbr 25111 dvcnvlem 25138 dvferm1 25147 dvferm2 25149 ulmdm 25550 ulmdvlem3 25559 minvecolem4a 29235 hlimf 29595 hhsscms 29636 occllem 29661 occl 29662 chscllem4 29998 fmptcof2 30990 heiborlem9 35973 bfplem1 35976 iscard4 41119 xlimdm 43369 rngciso 45509 rngcisoALTV 45521 ringciso 45560 ringcisoALTV 45584 |
Copyright terms: Public domain | W3C validator |