MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvbrb Structured version   Visualization version   GIF version

Theorem funfvbrb 7071
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 7070 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 df-br 5144 . . 3 (𝐴𝐹(𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2sylibr 234 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹𝐴))
4 funrel 6583 . . 3 (Fun 𝐹 → Rel 𝐹)
5 releldm 5955 . . 3 ((Rel 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
64, 5sylan 580 . 2 ((Fun 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
73, 6impbida 801 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cop 4632   class class class wbr 5143  dom cdm 5685  Rel wrel 5690  Fun wfun 6555  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  fmptco  7149  fpwwe2lem12  10682  fpwwe2  10683  climdm  15590  invco  17815  ffthiso  17976  fuciso  18023  setciso  18136  catciso  18156  rngciso  20638  ringciso  20672  lmcau  25347  dvcnp  25954  dvadd  25977  dvmul  25978  dvaddf  25979  dvmulf  25980  dvco  25985  dvcof  25986  dvcjbr  25987  dvcnvlem  26014  dvferm1  26023  dvferm2  26025  ulmdm  26436  ulmdvlem3  26445  minvecolem4a  30896  hlimf  31256  hhsscms  31297  occllem  31322  occl  31323  chscllem4  31659  fmptcof2  32667  heiborlem9  37826  bfplem1  37829  iscard4  43546  xlimdm  45872  rngcisoALTV  48193  ringcisoALTV  48227
  Copyright terms: Public domain W3C validator