![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 7051 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
2 | df-br 5149 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
4 | funrel 6565 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | releldm 5943 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
7 | 3, 6 | impbida 799 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⟨cop 4634 class class class wbr 5148 dom cdm 5676 Rel wrel 5681 Fun wfun 6537 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: fmptco 7129 fpwwe2lem12 10639 fpwwe2 10640 climdm 15500 invco 17720 ffthiso 17882 fuciso 17930 setciso 18043 catciso 18063 lmcau 24837 dvcnp 25443 dvadd 25464 dvmul 25465 dvaddf 25466 dvmulf 25467 dvco 25471 dvcof 25472 dvcjbr 25473 dvcnvlem 25500 dvferm1 25509 dvferm2 25511 ulmdm 25912 ulmdvlem3 25921 minvecolem4a 30168 hlimf 30528 hhsscms 30569 occllem 30594 occl 30595 chscllem4 30931 fmptcof2 31920 heiborlem9 36773 bfplem1 36776 iscard4 42366 xlimdm 44652 rngciso 46959 rngcisoALTV 46971 ringciso 47010 ringcisoALTV 47034 |
Copyright terms: Public domain | W3C validator |