| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 6983 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 2 | df-br 5090 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
| 4 | funrel 6498 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | releldm 5883 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
| 7 | 3, 6 | impbida 800 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 dom cdm 5614 Rel wrel 5619 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fmptco 7062 fpwwe2lem12 10533 fpwwe2 10534 climdm 15461 invco 17678 ffthiso 17838 fuciso 17885 setciso 17998 catciso 18018 rngciso 20553 ringciso 20587 lmcau 25240 dvcnp 25847 dvadd 25870 dvmul 25871 dvaddf 25872 dvmulf 25873 dvco 25878 dvcof 25879 dvcjbr 25880 dvcnvlem 25907 dvferm1 25916 dvferm2 25918 ulmdm 26329 ulmdvlem3 26338 minvecolem4a 30857 hlimf 31217 hhsscms 31258 occllem 31283 occl 31284 chscllem4 31620 fmptcof2 32639 heiborlem9 37869 bfplem1 37872 iscard4 43636 xlimdm 45965 rngcisoALTV 48387 ringcisoALTV 48421 ffvbr 48966 |
| Copyright terms: Public domain | W3C validator |