MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvbrb Structured version   Visualization version   GIF version

Theorem funfvbrb 7070
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 7069 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 df-br 5148 . . 3 (𝐴𝐹(𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2sylibr 234 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹𝐴))
4 funrel 6584 . . 3 (Fun 𝐹 → Rel 𝐹)
5 releldm 5957 . . 3 ((Rel 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
64, 5sylan 580 . 2 ((Fun 𝐹𝐴𝐹(𝐹𝐴)) → 𝐴 ∈ dom 𝐹)
73, 6impbida 801 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹𝐴𝐹(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2105  cop 4636   class class class wbr 5147  dom cdm 5688  Rel wrel 5693  Fun wfun 6556  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by:  fmptco  7148  fpwwe2lem12  10679  fpwwe2  10680  climdm  15586  invco  17818  ffthiso  17982  fuciso  18031  setciso  18144  catciso  18164  rngciso  20654  ringciso  20688  lmcau  25360  dvcnp  25968  dvadd  25991  dvmul  25992  dvaddf  25993  dvmulf  25994  dvco  25999  dvcof  26000  dvcjbr  26001  dvcnvlem  26028  dvferm1  26037  dvferm2  26039  ulmdm  26450  ulmdvlem3  26459  minvecolem4a  30905  hlimf  31265  hhsscms  31306  occllem  31331  occl  31332  chscllem4  31668  fmptcof2  32673  heiborlem9  37805  bfplem1  37808  iscard4  43522  xlimdm  45812  rngcisoALTV  48120  ringcisoALTV  48154
  Copyright terms: Public domain W3C validator