Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fncoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fnco 6546 as of 20-Sep-2024. (Contributed by NM, 22-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fncoOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6530 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fnfun 6530 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funco 6471 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → Fun (𝐹 ∘ 𝐺)) |
6 | fndm 6533 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | sseq2d 3958 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺 ⊆ 𝐴)) |
8 | 7 | biimpar 478 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → ran 𝐺 ⊆ dom 𝐹) |
9 | dmcosseq 5880 | . . . . 5 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
11 | 10 | 3adant2 1130 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
12 | fndm 6533 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
13 | 12 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
14 | 11, 13 | eqtrd 2780 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = 𝐵) |
15 | df-fn 6434 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
16 | 5, 14, 15 | sylanbrc 583 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ⊆ wss 3892 dom cdm 5589 ran crn 5590 ∘ ccom 5593 Fun wfun 6425 Fn wfn 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6433 df-fn 6434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |