MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncoOLD Structured version   Visualization version   GIF version

Theorem fncoOLD 6534
Description: Obsolete version of fnco 6533 as of 20-Sep-2024. (Contributed by NM, 22-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fncoOLD ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fncoOLD
StepHypRef Expression
1 fnfun 6517 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fnfun 6517 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funco 6458 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 595 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → Fun (𝐹𝐺))
543adant3 1130 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → Fun (𝐹𝐺))
6 fndm 6520 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3949 . . . . . 6 (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺𝐴))
87biimpar 477 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → ran 𝐺 ⊆ dom 𝐹)
9 dmcosseq 5871 . . . . 5 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
108, 9syl 17 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
11103adant2 1129 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
12 fndm 6520 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
13123ad2ant2 1132 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
1411, 13eqtrd 2778 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = 𝐵)
15 df-fn 6421 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
165, 14, 15sylanbrc 582 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wss 3883  dom cdm 5580  ran crn 5581  ccom 5584  Fun wfun 6412   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator