Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fncoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fnco 6533 as of 20-Sep-2024. (Contributed by NM, 22-May-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fncoOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6517 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fnfun 6517 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funco 6458 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 595 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant3 1130 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → Fun (𝐹 ∘ 𝐺)) |
6 | fndm 6520 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | sseq2d 3949 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺 ⊆ 𝐴)) |
8 | 7 | biimpar 477 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → ran 𝐺 ⊆ dom 𝐹) |
9 | dmcosseq 5871 | . . . . 5 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
11 | 10 | 3adant2 1129 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
12 | fndm 6520 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
13 | 12 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
14 | 11, 13 | eqtrd 2778 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = 𝐵) |
15 | df-fn 6421 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
16 | 5, 14, 15 | sylanbrc 582 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ran crn 5581 ∘ ccom 5584 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |