MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimasnd Structured version   Visualization version   GIF version

Theorem fnimasnd 7340
Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
fnimasnd.1 (𝜑𝐹 Fn 𝐴)
fnimasnd.2 (𝜑𝑆𝐴)
Assertion
Ref Expression
fnimasnd (𝜑 → (𝐹 “ {𝑆}) = {(𝐹𝑆)})

Proof of Theorem fnimasnd
StepHypRef Expression
1 fnimasnd.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fnimasnd.2 . . 3 (𝜑𝑆𝐴)
3 fnsnfv 6940 . . 3 ((𝐹 Fn 𝐴𝑆𝐴) → {(𝐹𝑆)} = (𝐹 “ {𝑆}))
41, 2, 3syl2anc 584 . 2 (𝜑 → {(𝐹𝑆)} = (𝐹 “ {𝑆}))
54eqcomd 2735 1 (𝜑 → (𝐹 “ {𝑆}) = {(𝐹𝑆)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  bdayn0p1  28258
  Copyright terms: Public domain W3C validator