Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimasnd Structured version   Visualization version   GIF version

Theorem fnimasnd 42230
Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
fnimasnd.1 (𝜑𝐹 Fn 𝐴)
fnimasnd.2 (𝜑𝑆𝐴)
Assertion
Ref Expression
fnimasnd (𝜑 → (𝐹 “ {𝑆}) = {(𝐹𝑆)})

Proof of Theorem fnimasnd
StepHypRef Expression
1 fnimasnd.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fnimasnd.2 . . 3 (𝜑𝑆𝐴)
3 fnsnfv 6968 . . 3 ((𝐹 Fn 𝐴𝑆𝐴) → {(𝐹𝑆)} = (𝐹 “ {𝑆}))
41, 2, 3syl2anc 584 . 2 (𝜑 → {(𝐹𝑆)} = (𝐹 “ {𝑆}))
54eqcomd 2740 1 (𝜑 → (𝐹 “ {𝑆}) = {(𝐹𝑆)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4606  cima 5668   Fn wfn 6536  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-fv 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator