Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimasnd | Structured version Visualization version GIF version |
Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
fnimasnd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnimasnd.2 | ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
Ref | Expression |
---|---|
fnimasnd | ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimasnd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnimasnd.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) | |
3 | fnsnfv 6731 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → {(𝐹‘𝑆)} = (𝐹 “ {𝑆})) | |
4 | 1, 2, 3 | syl2anc 587 | . 2 ⊢ (𝜑 → {(𝐹‘𝑆)} = (𝐹 “ {𝑆})) |
5 | 4 | eqcomd 2764 | 1 ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {csn 4522 “ cima 5527 Fn wfn 6330 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-fv 6343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |