MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd4 Structured version   Visualization version   GIF version

Theorem fvmptd4 6992
Description: Deduction version of fvmpt 6968 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.)
Hypotheses
Ref Expression
fvmptd4.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptd4.2 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd4.3 (𝜑𝐴𝐷)
fvmptd4.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd4 (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd4
StepHypRef Expression
1 fvmptd4.2 . 2 (𝜑𝐹 = (𝑥𝐷𝐵))
2 fvmptd4.1 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
32adantl 481 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
4 fvmptd4.3 . 2 (𝜑𝐴𝐷)
5 fvmptd4.4 . 2 (𝜑𝐶𝑉)
61, 3, 4, 5fvmptd 6975 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  selvval  22022  mhpmulcl  22036  psdval  22046  psdcoef  22047  evl1deg1  33545  evl1deg2  33546  evl1deg3  33547  2sqr3minply  33770  cos9thpiminply  33778  evlsvval  42548  evlsvvval  42551  evlsvarval  42553  selvvvval  42573  prjcrvval  42620  dvnprodlem1  45944
  Copyright terms: Public domain W3C validator