| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd4 | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmpt 6934 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| fvmptd4.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptd4.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd4.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd4.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmptd4 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd4.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptd4.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| 4 | fvmptd4.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 5 | fvmptd4.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 6 | 1, 3, 4, 5 | fvmptd 6941 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: selvval 22038 mhpmulcl 22052 psdval 22062 psdcoef 22063 evl1deg1 33524 evl1deg2 33525 evl1deg3 33526 2sqr3minply 33749 cos9thpiminply 33757 evlsvval 42536 evlsvvval 42539 evlsvarval 42541 selvvvval 42561 prjcrvval 42608 dvnprodlem1 45931 |
| Copyright terms: Public domain | W3C validator |