MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd4 Structured version   Visualization version   GIF version

Theorem fvmptd4 7053
Description: Deduction version of fvmpt 7029 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.)
Hypotheses
Ref Expression
fvmptd4.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptd4.2 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd4.3 (𝜑𝐴𝐷)
fvmptd4.4 (𝜑𝐶𝑉)
Assertion
Ref Expression
fvmptd4 (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd4
StepHypRef Expression
1 fvmptd4.2 . 2 (𝜑𝐹 = (𝑥𝐷𝐵))
2 fvmptd4.1 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
32adantl 481 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
4 fvmptd4.3 . 2 (𝜑𝐴𝐷)
5 fvmptd4.4 . 2 (𝜑𝐶𝑉)
61, 3, 4, 5fvmptd 7036 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  mhpmulcl  22176  evl1deg1  33566  evl1deg2  33567  evl1deg3  33568  2sqr3minply  33738  evlsvval  42515  evlsvvval  42518  evlsvarval  42520  selvvvval  42540  prjcrvval  42587  uspgrimprop  47757
  Copyright terms: Public domain W3C validator