| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd4 | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmpt 6986 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| fvmptd4.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptd4.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd4.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd4.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmptd4 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd4.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptd4.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| 4 | fvmptd4.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 5 | fvmptd4.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 6 | 1, 3, 4, 5 | fvmptd 6993 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: selvval 22073 mhpmulcl 22087 psdval 22097 psdcoef 22098 evl1deg1 33589 evl1deg2 33590 evl1deg3 33591 2sqr3minply 33814 cos9thpiminply 33822 evlsvval 42583 evlsvvval 42586 evlsvarval 42588 selvvvval 42608 prjcrvval 42655 dvnprodlem1 45975 |
| Copyright terms: Public domain | W3C validator |