![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptd4 | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt 6996 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.) |
Ref | Expression |
---|---|
fvmptd4.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptd4.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
fvmptd4.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd4.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd4 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd4.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | fvmptd4.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
4 | fvmptd4.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd4.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 1, 3, 4, 5 | fvmptd 7003 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5231 ‘cfv 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6493 df-fun 6543 df-fv 6549 |
This theorem is referenced by: evlsvval 41130 evlsvvval 41133 evlsvarval 41135 selvvvval 41155 prjcrvval 41371 |
Copyright terms: Public domain | W3C validator |