| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd4 | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmpt 6929 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| fvmptd4.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptd4.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd4.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd4.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmptd4 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd4.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptd4.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| 4 | fvmptd4.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 5 | fvmptd4.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 6 | 1, 3, 4, 5 | fvmptd 6936 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: selvval 22051 mhpmulcl 22065 psdval 22075 psdcoef 22076 evl1deg1 33537 evl1deg2 33538 evl1deg3 33539 mplvrpmrhm 33575 esplyfval 33584 extdgfialglem2 33704 2sqr3minply 33791 cos9thpiminply 33799 evlsvval 42599 evlsvvval 42602 evlsvarval 42604 selvvvval 42624 prjcrvval 42671 dvnprodlem1 45990 |
| Copyright terms: Public domain | W3C validator |