![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnoprab | Structured version Visualization version GIF version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
fnoprab.1 | ⊢ (𝜑 → ∃!𝑧𝜓) |
Ref | Expression |
---|---|
fnoprab | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑 ∧ 𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnoprab.1 | . . 3 ⊢ (𝜑 → ∃!𝑧𝜓) | |
2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
3 | fnoprabg 7534 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑 ∧ 𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑 ∧ 𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃!weu 2561 {copab 5210 Fn wfn 6538 {coprab 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-fun 6545 df-fn 6546 df-oprab 7416 |
This theorem is referenced by: ovid 7552 ov 7555 |
Copyright terms: Public domain | W3C validator |