Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnoprab | Structured version Visualization version GIF version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
fnoprab.1 | ⊢ (𝜑 → ∃!𝑧𝜓) |
Ref | Expression |
---|---|
fnoprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnoprab.1 | . . 3 ⊢ (𝜑 → ∃!𝑧𝜓) | |
2 | 1 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
3 | fnoprabg 7375 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃!weu 2568 {copab 5132 Fn wfn 6413 {coprab 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 df-oprab 7259 |
This theorem is referenced by: ovid 7392 ov 7395 |
Copyright terms: Public domain | W3C validator |