![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnoprab | Structured version Visualization version GIF version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
fnoprab.1 | ⊢ (𝜑 → ∃!𝑧𝜓) |
Ref | Expression |
---|---|
fnoprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnoprab.1 | . . 3 ⊢ (𝜑 → ∃!𝑧𝜓) | |
2 | 1 | gen2 1892 | . 2 ⊢ ∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
3 | fnoprabg 6995 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wal 1651 ∃!weu 2608 {copab 4905 Fn wfn 6096 {coprab 6879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-fun 6103 df-fn 6104 df-oprab 6882 |
This theorem is referenced by: ovid 7011 ov 7014 |
Copyright terms: Public domain | W3C validator |