| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnoprab | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| fnoprab.1 | ⊢ (𝜑 → ∃!𝑧𝜓) |
| Ref | Expression |
|---|---|
| fnoprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnoprab.1 | . . 3 ⊢ (𝜑 → ∃!𝑧𝜓) | |
| 2 | 1 | gen2 1795 | . 2 ⊢ ∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
| 3 | fnoprabg 7537 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃!weu 2566 {copab 5185 Fn wfn 6535 {coprab 7413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-fun 6542 df-fn 6543 df-oprab 7416 |
| This theorem is referenced by: ovid 7555 ov 7558 |
| Copyright terms: Public domain | W3C validator |