MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofunOLD Structured version   Visualization version   GIF version

Theorem mpofunOLD 7277
Description: Obsolete version of mpofun 7276 as of 23-Jul-2024. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofunOLD Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofunOLD
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2780 . . . . . 6 ((𝑧 = 𝐶𝑤 = 𝐶) → 𝑧 = 𝑤)
21ad2ant2l 745 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
32gen2 1798 . . . 4 𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
4 eqeq1 2762 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = 𝐶𝑤 = 𝐶))
54anbi2d 631 . . . . 5 (𝑧 = 𝑤 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
65mo4 2584 . . . 4 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ∀𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤))
73, 6mpbir 234 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
87funoprab 7274 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
10 df-mpo 7161 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
119, 10eqtri 2781 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
1211funeqi 6361 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
138, 12mpbir 234 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2111  ∃*wmo 2555  Fun wfun 6334  {coprab 7157  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-fun 6342  df-oprab 7160  df-mpo 7161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator