MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofunOLD Structured version   Visualization version   GIF version

Theorem mpofunOLD 7399
Description: Obsolete version of mpofun 7398 as of 23-Jul-2024. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofunOLD Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofunOLD
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2764 . . . . . 6 ((𝑧 = 𝐶𝑤 = 𝐶) → 𝑧 = 𝑤)
21ad2ant2l 743 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
32gen2 1799 . . . 4 𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
4 eqeq1 2742 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = 𝐶𝑤 = 𝐶))
54anbi2d 629 . . . . 5 (𝑧 = 𝑤 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
65mo4 2566 . . . 4 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ∀𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤))
73, 6mpbir 230 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
87funoprab 7396 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
10 df-mpo 7280 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
119, 10eqtri 2766 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
1211funeqi 6455 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
138, 12mpbir 230 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  ∃*wmo 2538  Fun wfun 6427  {coprab 7276  cmpo 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435  df-oprab 7279  df-mpo 7280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator