MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnov Structured version   Visualization version   GIF version

Theorem ffnov 7379
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
Assertion
Ref Expression
ffnov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 6974 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶))
2 fveq2 6756 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7258 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2797 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eleq1d 2823 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑤) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶))
65ralxp 5739 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶)
76anbi2i 622 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
81, 7bitri 274 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cop 4564   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258
This theorem is referenced by:  fovcl  7380  cantnfvalf  9353  axaddf  10832  axmulf  10833  mulnzcnopr  11551  frmdplusg  18408  gass  18822  sylow2blem2  19141  matecl  21482  txdis1cn  22694  isxmet2d  23388  prdsmet  23431  imasdsf1olem  23434  imasf1oxmet  23436  imasf1omet  23437  xmetresbl  23498  comet  23575  tgqioo  23869  xrtgioo  23875  opnmblALT  24672  dvdsmulf1o  26248  hhssabloilem  29524  fovcld  30876  pstmxmet  31749  xrge0pluscn  31792  isbndx  35867  isbnd3  35869  isbnd3b  35870  prdsbnd  35878  isdrngo2  36043  clintopcllaw  45293
  Copyright terms: Public domain W3C validator