| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnov | Structured version Visualization version GIF version | ||
| Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.) |
| Ref | Expression |
|---|---|
| ffnov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7073 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶)) | |
| 2 | fveq2 6840 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7372 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑤) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶)) |
| 6 | 5 | ralxp 5795 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4591 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: fovcld 7496 cantnfvalf 9594 axaddf 11074 axmulf 11075 mulnzcnf 11800 frmdplusg 18763 gass 19215 sylow2blem2 19535 matecl 22345 txdis1cn 23555 isxmet2d 24248 prdsmet 24291 imasdsf1olem 24294 imasf1oxmet 24296 imasf1omet 24297 xmetresbl 24358 comet 24434 tgqioo 24721 xrtgioo 24728 opnmblALT 25537 mpodvdsmulf1o 27137 dvdsmulf1o 27139 hhssabloilem 31240 pstmxmet 33880 xrge0pluscn 33923 mpomulnzcnf 36280 isbndx 37769 isbnd3 37771 isbnd3b 37772 prdsbnd 37780 isdrngo2 37945 aks6d1c6lem3 42153 clintopcllaw 48192 |
| Copyright terms: Public domain | W3C validator |