MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnov Structured version   Visualization version   GIF version

Theorem ffnov 7401
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
Assertion
Ref Expression
ffnov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 6992 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶))
2 fveq2 6774 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7278 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2796 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eleq1d 2823 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑤) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶))
65ralxp 5750 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶)
76anbi2i 623 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
81, 7bitri 274 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278
This theorem is referenced by:  fovcl  7402  cantnfvalf  9423  axaddf  10901  axmulf  10902  mulnzcnopr  11621  frmdplusg  18493  gass  18907  sylow2blem2  19226  matecl  21574  txdis1cn  22786  isxmet2d  23480  prdsmet  23523  imasdsf1olem  23526  imasf1oxmet  23528  imasf1omet  23529  xmetresbl  23590  comet  23669  tgqioo  23963  xrtgioo  23969  opnmblALT  24767  dvdsmulf1o  26343  hhssabloilem  29623  fovcld  30975  pstmxmet  31847  xrge0pluscn  31890  isbndx  35940  isbnd3  35942  isbnd3b  35943  prdsbnd  35951  isdrngo2  36116  clintopcllaw  45405
  Copyright terms: Public domain W3C validator