| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnov | Structured version Visualization version GIF version | ||
| Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.) |
| Ref | Expression |
|---|---|
| ffnov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7052 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶)) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7349 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
| 5 | 4 | eleq1d 2816 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑤) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶)) |
| 6 | 5 | ralxp 5780 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4579 × cxp 5612 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: fovcld 7473 cantnfvalf 9555 axaddf 11036 axmulf 11037 mulnzcnf 11763 frmdplusg 18762 gass 19213 sylow2blem2 19533 matecl 22340 txdis1cn 23550 isxmet2d 24242 prdsmet 24285 imasdsf1olem 24288 imasf1oxmet 24290 imasf1omet 24291 xmetresbl 24352 comet 24428 tgqioo 24715 xrtgioo 24722 opnmblALT 25531 mpodvdsmulf1o 27131 dvdsmulf1o 27133 hhssabloilem 31241 pstmxmet 33910 xrge0pluscn 33953 mpomulnzcnf 36343 isbndx 37832 isbnd3 37834 isbnd3b 37835 prdsbnd 37843 isdrngo2 38008 aks6d1c6lem3 42275 clintopcllaw 48321 |
| Copyright terms: Public domain | W3C validator |