| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnov | Structured version Visualization version GIF version | ||
| Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.) |
| Ref | Expression |
|---|---|
| ffnov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7053 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶)) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7352 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑤) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶)) |
| 6 | 5 | ralxp 5784 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹‘𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4583 × cxp 5617 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: fovcld 7476 cantnfvalf 9561 axaddf 11039 axmulf 11040 mulnzcnf 11766 frmdplusg 18728 gass 19180 sylow2blem2 19500 matecl 22310 txdis1cn 23520 isxmet2d 24213 prdsmet 24256 imasdsf1olem 24259 imasf1oxmet 24261 imasf1omet 24262 xmetresbl 24323 comet 24399 tgqioo 24686 xrtgioo 24693 opnmblALT 25502 mpodvdsmulf1o 27102 dvdsmulf1o 27104 hhssabloilem 31205 pstmxmet 33870 xrge0pluscn 33913 mpomulnzcnf 36283 isbndx 37772 isbnd3 37774 isbnd3b 37775 prdsbnd 37783 isdrngo2 37948 aks6d1c6lem3 42155 clintopcllaw 48205 |
| Copyright terms: Public domain | W3C validator |