MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2o Structured version   Visualization version   GIF version

Theorem fnpr2o 17527
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fnpr2o ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2o
StepHypRef Expression
1 peano1 7868 . . . 4 ∅ ∈ ω
21a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ∈ ω)
3 1onn 8607 . . . 4 1o ∈ ω
43a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → 1o ∈ ω)
5 simpl 482 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
7 1n0 8455 . . . . 5 1o ≠ ∅
87necomi 2980 . . . 4 ∅ ≠ 1o
98a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ≠ 1o)
10 fnprg 6578 . . 3 (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴𝑉𝐵𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
112, 4, 5, 6, 9, 10syl221anc 1383 . 2 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
12 df2o3 8445 . . 3 2o = {∅, 1o}
1312fneq2i 6619 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
1411, 13sylibr 234 1 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  c0 4299  {cpr 4594  cop 4598   Fn wfn 6509  ωcom 7845  1oc1o 8430  2oc2o 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-fun 6516  df-fn 6517  df-om 7846  df-1o 8437  df-2o 8438
This theorem is referenced by:  fnpr2ob  17528  xpsfeq  17533  xpsfrnel2  17534  xpsrnbas  17541  xpsaddlem  17543  xpsvsca  17547  xpsle  17549  xpstopnlem1  23703  xpstopnlem2  23705  xpsxmetlem  24274  xpsdsval  24276  xpsmet  24277
  Copyright terms: Public domain W3C validator