![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnpr2o | Structured version Visualization version GIF version |
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7883 | . . . 4 ⊢ ∅ ∈ ω | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
3 | 1onn 8645 | . . . 4 ⊢ 1o ∈ ω | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
7 | 1n0 8494 | . . . . 5 ⊢ 1o ≠ ∅ | |
8 | 7 | necomi 2994 | . . . 4 ⊢ ∅ ≠ 1o |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
10 | fnprg 6607 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) | |
11 | 2, 4, 5, 6, 9, 10 | syl221anc 1380 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) |
12 | df2o3 8480 | . . 3 ⊢ 2o = {∅, 1o} | |
13 | 12 | fneq2i 6647 | . 2 ⊢ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) |
14 | 11, 13 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 {cpr 4630 ⟨cop 4634 Fn wfn 6538 ωcom 7859 1oc1o 8465 2oc2o 8466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-fun 6545 df-fn 6546 df-om 7860 df-1o 8472 df-2o 8473 |
This theorem is referenced by: fnpr2ob 17511 xpsfeq 17516 xpsfrnel2 17517 xpsrnbas 17524 xpsaddlem 17526 xpsvsca 17530 xpsle 17532 xpstopnlem1 23633 xpstopnlem2 23635 xpsxmetlem 24205 xpsdsval 24207 xpsmet 24208 |
Copyright terms: Public domain | W3C validator |