| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2o | Structured version Visualization version GIF version | ||
| Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7865 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
| 3 | 1onn 8604 | . . . 4 ⊢ 1o ∈ ω | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 7 | 1n0 8452 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 8 | 7 | necomi 2979 | . . . 4 ⊢ ∅ ≠ 1o |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
| 10 | fnprg 6575 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) | |
| 11 | 2, 4, 5, 6, 9, 10 | syl221anc 1383 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 12 | df2o3 8442 | . . 3 ⊢ 2o = {∅, 1o} | |
| 13 | 12 | fneq2i 6616 | . 2 ⊢ ({〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 14 | 11, 13 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {cpr 4591 〈cop 4595 Fn wfn 6506 ωcom 7842 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-fun 6513 df-fn 6514 df-om 7843 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: fnpr2ob 17521 xpsfeq 17526 xpsfrnel2 17527 xpsrnbas 17534 xpsaddlem 17536 xpsvsca 17540 xpsle 17542 xpstopnlem1 23696 xpstopnlem2 23698 xpsxmetlem 24267 xpsdsval 24269 xpsmet 24270 |
| Copyright terms: Public domain | W3C validator |