MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2o Structured version   Visualization version   GIF version

Theorem fnpr2o 16833
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fnpr2o ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2o
StepHypRef Expression
1 peano1 7604 . . . 4 ∅ ∈ ω
21a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ∈ ω)
3 1onn 8268 . . . 4 1o ∈ ω
43a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → 1o ∈ ω)
5 simpl 485 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 487 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
7 1n0 8122 . . . . 5 1o ≠ ∅
87necomi 3073 . . . 4 ∅ ≠ 1o
98a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ≠ 1o)
10 fnprg 6416 . . 3 (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴𝑉𝐵𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
112, 4, 5, 6, 9, 10syl221anc 1377 . 2 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
12 df2o3 8120 . . 3 2o = {∅, 1o}
1312fneq2i 6454 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
1411, 13sylibr 236 1 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113  wne 3019  c0 4294  {cpr 4572  cop 4576   Fn wfn 6353  ωcom 7583  1oc1o 8098  2oc2o 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-fun 6360  df-fn 6361  df-om 7584  df-1o 8105  df-2o 8106
This theorem is referenced by:  fnpr2ob  16834  xpsfeq  16839  xpsfrnel2  16840  xpsrnbas  16847  xpsaddlem  16849  xpsvsca  16853  xpsle  16855  xpstopnlem1  22420  xpstopnlem2  22422  xpsxmetlem  22992  xpsdsval  22994  xpsmet  22995
  Copyright terms: Public domain W3C validator