| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2o | Structured version Visualization version GIF version | ||
| Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7819 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
| 3 | 1onn 8555 | . . . 4 ⊢ 1o ∈ ω | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 7 | 1n0 8403 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 8 | 7 | necomi 2982 | . . . 4 ⊢ ∅ ≠ 1o |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
| 10 | fnprg 6540 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) | |
| 11 | 2, 4, 5, 6, 9, 10 | syl221anc 1383 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 12 | df2o3 8393 | . . 3 ⊢ 2o = {∅, 1o} | |
| 13 | 12 | fneq2i 6579 | . 2 ⊢ ({〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 14 | 11, 13 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 {cpr 4578 〈cop 4582 Fn wfn 6476 ωcom 7796 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-fun 6483 df-fn 6484 df-om 7797 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: fnpr2ob 17459 xpsfeq 17464 xpsfrnel2 17465 xpsrnbas 17472 xpsaddlem 17474 xpsvsca 17478 xpsle 17480 xpstopnlem1 23722 xpstopnlem2 23724 xpsxmetlem 24292 xpsdsval 24294 xpsmet 24295 |
| Copyright terms: Public domain | W3C validator |