| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2o | Structured version Visualization version GIF version | ||
| Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7825 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
| 3 | 1onn 8561 | . . . 4 ⊢ 1o ∈ ω | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 7 | 1n0 8409 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 8 | 7 | necomi 2983 | . . . 4 ⊢ ∅ ≠ 1o |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
| 10 | fnprg 6545 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) | |
| 11 | 2, 4, 5, 6, 9, 10 | syl221anc 1383 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 12 | df2o3 8399 | . . 3 ⊢ 2o = {∅, 1o} | |
| 13 | 12 | fneq2i 6584 | . 2 ⊢ ({〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
| 14 | 11, 13 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 {cpr 4577 〈cop 4581 Fn wfn 6481 ωcom 7802 1oc1o 8384 2oc2o 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-fun 6488 df-fn 6489 df-om 7803 df-1o 8391 df-2o 8392 |
| This theorem is referenced by: fnpr2ob 17464 xpsfeq 17469 xpsfrnel2 17470 xpsrnbas 17477 xpsaddlem 17479 xpsvsca 17483 xpsle 17485 xpstopnlem1 23725 xpstopnlem2 23727 xpsxmetlem 24295 xpsdsval 24297 xpsmet 24298 |
| Copyright terms: Public domain | W3C validator |