Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version |
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
fnsn.1 | ⊢ 𝐴 ∈ V |
fnsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fnsng 6484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3431 {csn 4567 〈cop 4573 Fn wfn 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-fun 6434 df-fn 6435 |
This theorem is referenced by: f1osn 6753 fnsnb 7035 frrlem11 8104 frrlem12 8105 elixpsn 8717 axdc3lem4 10220 hashf1lem1 14179 hashf1lem1OLD 14180 axlowdimlem8 27328 axlowdimlem9 27329 axlowdimlem11 27331 axlowdimlem12 27332 bnj927 32758 cvmliftlem4 33259 cvmliftlem5 33260 finixpnum 35771 poimirlem3 35789 |
Copyright terms: Public domain | W3C validator |