MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsn Structured version   Visualization version   GIF version

Theorem fnsn 6476
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1 𝐴 ∈ V
fnsn.2 𝐵 ∈ V
Assertion
Ref Expression
fnsn {⟨𝐴, 𝐵⟩} Fn {𝐴}

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2 𝐴 ∈ V
2 fnsn.2 . 2 𝐵 ∈ V
3 fnsng 6470 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
41, 2, 3mp2an 688 1 {⟨𝐴, 𝐵⟩} Fn {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421
This theorem is referenced by:  f1osn  6739  fnsnb  7020  frrlem11  8083  frrlem12  8084  elixpsn  8683  axdc3lem4  10140  hashf1lem1  14096  hashf1lem1OLD  14097  axlowdimlem8  27220  axlowdimlem9  27221  axlowdimlem11  27223  axlowdimlem12  27224  bnj927  32649  cvmliftlem4  33150  cvmliftlem5  33151  finixpnum  35689  poimirlem3  35707
  Copyright terms: Public domain W3C validator