| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnsn.1 | ⊢ 𝐴 ∈ V |
| fnsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fnsng 6571 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: f1osn 6843 fnsnbOLD 7143 frrlem11 8278 frrlem12 8279 elixpsn 8913 axdc3lem4 10413 hashf1lem1 14427 axlowdimlem8 28883 axlowdimlem9 28884 axlowdimlem11 28886 axlowdimlem12 28887 bnj927 34766 cvmliftlem4 35282 cvmliftlem5 35283 finixpnum 37606 poimirlem3 37624 |
| Copyright terms: Public domain | W3C validator |