![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version |
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
fnsn.1 | ⊢ 𝐴 ∈ V |
fnsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fnsng 6152 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
4 | 1, 2, 3 | mp2an 684 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 Vcvv 3385 {csn 4368 〈cop 4374 Fn wfn 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-fun 6103 df-fn 6104 |
This theorem is referenced by: f1osn 6395 fnsnb 6661 fvsnun2 6678 elixpsn 8187 axdc3lem4 9563 hashf1lem1 13488 axlowdimlem8 26186 axlowdimlem9 26187 axlowdimlem11 26189 axlowdimlem12 26190 bnj927 31356 cvmliftlem4 31787 cvmliftlem5 31788 finixpnum 33883 poimirlem3 33901 |
Copyright terms: Public domain | W3C validator |