| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnsn.1 | ⊢ 𝐴 ∈ V |
| fnsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fnsng 6534 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: f1osn 6804 fnsnbOLD 7102 frrlem11 8229 frrlem12 8230 elixpsn 8864 axdc3lem4 10347 hashf1lem1 14362 axlowdimlem8 28898 axlowdimlem9 28899 axlowdimlem11 28901 axlowdimlem12 28902 bnj927 34752 cvmliftlem4 35281 cvmliftlem5 35282 finixpnum 37605 poimirlem3 37623 |
| Copyright terms: Public domain | W3C validator |