MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsn Structured version   Visualization version   GIF version

Theorem fnsn 6490
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1 𝐴 ∈ V
fnsn.2 𝐵 ∈ V
Assertion
Ref Expression
fnsn {⟨𝐴, 𝐵⟩} Fn {𝐴}

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2 𝐴 ∈ V
2 fnsn.2 . 2 𝐵 ∈ V
3 fnsng 6484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
41, 2, 3mp2an 689 1 {⟨𝐴, 𝐵⟩} Fn {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3431  {csn 4567  cop 4573   Fn wfn 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-fun 6434  df-fn 6435
This theorem is referenced by:  f1osn  6753  fnsnb  7035  frrlem11  8104  frrlem12  8105  elixpsn  8717  axdc3lem4  10220  hashf1lem1  14179  hashf1lem1OLD  14180  axlowdimlem8  27328  axlowdimlem9  27329  axlowdimlem11  27331  axlowdimlem12  27332  bnj927  32758  cvmliftlem4  33259  cvmliftlem5  33260  finixpnum  35771  poimirlem3  35789
  Copyright terms: Public domain W3C validator