MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsn Structured version   Visualization version   GIF version

Theorem fnsn 6574
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1 𝐴 ∈ V
fnsn.2 𝐵 ∈ V
Assertion
Ref Expression
fnsn {⟨𝐴, 𝐵⟩} Fn {𝐴}

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2 𝐴 ∈ V
2 fnsn.2 . 2 𝐵 ∈ V
3 fnsng 6568 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
41, 2, 3mp2an 692 1 {⟨𝐴, 𝐵⟩} Fn {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513  df-fn 6514
This theorem is referenced by:  f1osn  6840  fnsnbOLD  7140  frrlem11  8275  frrlem12  8276  elixpsn  8910  axdc3lem4  10406  hashf1lem1  14420  axlowdimlem8  28876  axlowdimlem9  28877  axlowdimlem11  28879  axlowdimlem12  28880  bnj927  34759  cvmliftlem4  35275  cvmliftlem5  35276  finixpnum  37599  poimirlem3  37617
  Copyright terms: Public domain W3C validator