MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsn Structured version   Visualization version   GIF version

Theorem fnsn 6539
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
fnsn.1 𝐴 ∈ V
fnsn.2 𝐵 ∈ V
Assertion
Ref Expression
fnsn {⟨𝐴, 𝐵⟩} Fn {𝐴}

Proof of Theorem fnsn
StepHypRef Expression
1 fnsn.1 . 2 𝐴 ∈ V
2 fnsn.2 . 2 𝐵 ∈ V
3 fnsng 6533 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
41, 2, 3mp2an 692 1 {⟨𝐴, 𝐵⟩} Fn {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  {csn 4573  cop 4579   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-fun 6483  df-fn 6484
This theorem is referenced by:  f1osn  6803  fnsnbOLD  7100  frrlem11  8226  frrlem12  8227  elixpsn  8861  axdc3lem4  10344  hashf1lem1  14362  axlowdimlem8  28927  axlowdimlem9  28928  axlowdimlem11  28930  axlowdimlem12  28931  bnj927  34781  cvmliftlem4  35332  cvmliftlem5  35333  finixpnum  37644  poimirlem3  37662
  Copyright terms: Public domain W3C validator