| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnsn.1 | ⊢ 𝐴 ∈ V |
| fnsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fnsng 6552 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: f1osn 6822 fnsnbOLD 7122 frrlem11 8252 frrlem12 8253 elixpsn 8887 axdc3lem4 10382 hashf1lem1 14396 axlowdimlem8 28929 axlowdimlem9 28930 axlowdimlem11 28932 axlowdimlem12 28933 bnj927 34752 cvmliftlem4 35268 cvmliftlem5 35269 finixpnum 37592 poimirlem3 37610 |
| Copyright terms: Public domain | W3C validator |