| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnsn.1 | ⊢ 𝐴 ∈ V |
| fnsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fnsng 6533 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: f1osn 6803 fnsnbOLD 7100 frrlem11 8226 frrlem12 8227 elixpsn 8861 axdc3lem4 10344 hashf1lem1 14362 axlowdimlem8 28927 axlowdimlem9 28928 axlowdimlem11 28930 axlowdimlem12 28931 bnj927 34781 cvmliftlem4 35332 cvmliftlem5 35333 finixpnum 37644 poimirlem3 37662 |
| Copyright terms: Public domain | W3C validator |