Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstres Structured version   Visualization version   GIF version

Theorem signstres 31732
Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstres ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑁,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstres
Dummy variables 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsv.p . . . . . . . 8 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . . . . 8 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . . . . . 8 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . . . . . 8 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstf 31723 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
6 wrdf 13859 . . . . . . 7 ((𝑇𝐹) ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ)
7 ffn 6510 . . . . . . 7 ((𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
85, 6, 73syl 18 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
91, 2, 3, 4signstlen 31724 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝑇𝐹)) = (♯‘𝐹))
109oveq2d 7167 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝑇𝐹))) = (0..^(♯‘𝐹)))
1110fneq2d 6443 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))) ↔ (𝑇𝐹) Fn (0..^(♯‘𝐹))))
128, 11mpbid 233 . . . . 5 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘𝐹)))
13 fnresin 30287 . . . . 5 ((𝑇𝐹) Fn (0..^(♯‘𝐹)) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1412, 13syl 17 . . . 4 (𝐹 ∈ Word ℝ → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1514adantr 481 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
16 elfzuz3 12898 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
17 fzoss2 13058 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝐹)) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1918adantl 482 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
20 incom 4181 . . . . . 6 ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = ((0..^(♯‘𝐹)) ∩ (0..^𝑁))
21 df-ss 3955 . . . . . . 7 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) ↔ ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2221biimpi 217 . . . . . 6 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2320, 22syl5eqr 2874 . . . . 5 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) = (0..^𝑁))
2423fneq2d 6443 . . . 4 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2519, 24syl 17 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2615, 25mpbid 233 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁))
27 wrdres 30528 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
281, 2, 3, 4signstf 31723 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ)
29 wrdf 13859 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ)
30 ffn 6510 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
3127, 28, 29, 304syl 19 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
321, 2, 3, 4signstlen 31724 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
3327, 32syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
34 wrdfn 13869 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
35 fnssres 6466 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
3634, 18, 35syl2an 595 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
37 hashfn 13729 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
3836, 37syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
39 elfznn0 12993 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐹)) → 𝑁 ∈ ℕ0)
40 hashfzo0 13784 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
4139, 40syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘(0..^𝑁)) = 𝑁)
4241adantl 482 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(0..^𝑁)) = 𝑁)
4333, 38, 423eqtrd 2864 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = 𝑁)
4443oveq2d 7167 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) = (0..^𝑁))
4544fneq2d 6443 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) ↔ (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁)))
4631, 45mpbid 233 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁))
47 fvres 6685 . . . . 5 (𝑚 ∈ (0..^𝑁) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
4847ad3antlr 727 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
49 simpr 485 . . . . . 6 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
5049fveq2d 6670 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔)))
5150fveq1d 6668 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇𝐹)‘𝑚) = ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚))
5227ad3antrrr 726 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
53 simplr 765 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑔 ∈ Word ℝ)
5438, 42eqtrd 2860 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5554oveq2d 7167 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5655eleq2d 2902 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) ↔ 𝑚 ∈ (0..^𝑁)))
5756biimpar 478 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
5857ad2antrr 722 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
591, 2, 3, 4signstfvc 31731 . . . . 5 (((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ ∧ 𝑔 ∈ Word ℝ ∧ 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁))))) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6052, 53, 58, 59syl3anc 1365 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6148, 51, 603eqtrd 2864 . . 3 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
62 wrdsplex 30529 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6362adantr 481 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6461, 63r19.29a 3293 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6526, 46, 64eqfnfvd 6800 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020  wrex 3143  cin 3938  wss 3939  ifcif 4469  {cpr 4565  {ctp 4567  cop 4569  cmpt 5142  cres 5555   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  cmpo 7153  cr 10528  0cc0 10529  1c1 10530  cmin 10862  -cneg 10863  0cn0 11889  cuz 12235  ...cfz 12885  ..^cfzo 13026  chash 13683  Word cword 13854   ++ cconcat 13915  sgncsgn 14438  Σcsu 15035  ndxcnx 16472  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-word 13855  df-lsw 13908  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-sgn 14439  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator