Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstres Structured version   Visualization version   GIF version

Theorem signstres 34545
Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstres ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑁,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstres
Dummy variables 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsv.p . . . . . . . 8 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . . . . 8 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . . . . . 8 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . . . . . 8 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstf 34536 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
6 wrdf 14443 . . . . . . 7 ((𝑇𝐹) ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ)
7 ffn 6656 . . . . . . 7 ((𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
85, 6, 73syl 18 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
91, 2, 3, 4signstlen 34537 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝑇𝐹)) = (♯‘𝐹))
109oveq2d 7369 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝑇𝐹))) = (0..^(♯‘𝐹)))
1110fneq2d 6580 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))) ↔ (𝑇𝐹) Fn (0..^(♯‘𝐹))))
128, 11mpbid 232 . . . . 5 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘𝐹)))
13 fnresin 32583 . . . . 5 ((𝑇𝐹) Fn (0..^(♯‘𝐹)) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1412, 13syl 17 . . . 4 (𝐹 ∈ Word ℝ → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1514adantr 480 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
16 elfzuz3 13442 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
17 fzoss2 13608 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝐹)) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1918adantl 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
20 incom 4162 . . . . . 6 ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = ((0..^(♯‘𝐹)) ∩ (0..^𝑁))
21 dfss2 3923 . . . . . . 7 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) ↔ ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2221biimpi 216 . . . . . 6 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2320, 22eqtr3id 2778 . . . . 5 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) = (0..^𝑁))
2423fneq2d 6580 . . . 4 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2519, 24syl 17 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2615, 25mpbid 232 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁))
27 wrdres 32889 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
281, 2, 3, 4signstf 34536 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ)
29 wrdf 14443 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ)
30 ffn 6656 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
3127, 28, 29, 304syl 19 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
321, 2, 3, 4signstlen 34537 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
3327, 32syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
34 wrdfn 14453 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
35 fnssres 6609 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
3634, 18, 35syl2an 596 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
37 hashfn 14300 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
3836, 37syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
39 elfznn0 13541 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐹)) → 𝑁 ∈ ℕ0)
40 hashfzo0 14355 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
4139, 40syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘(0..^𝑁)) = 𝑁)
4241adantl 481 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(0..^𝑁)) = 𝑁)
4333, 38, 423eqtrd 2768 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = 𝑁)
4443oveq2d 7369 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) = (0..^𝑁))
4544fneq2d 6580 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) ↔ (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁)))
4631, 45mpbid 232 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁))
47 fvres 6845 . . . . 5 (𝑚 ∈ (0..^𝑁) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
4847ad3antlr 731 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
49 simpr 484 . . . . . 6 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
5049fveq2d 6830 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔)))
5150fveq1d 6828 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇𝐹)‘𝑚) = ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚))
5227ad3antrrr 730 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
53 simplr 768 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑔 ∈ Word ℝ)
5438, 42eqtrd 2764 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5554oveq2d 7369 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5655eleq2d 2814 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) ↔ 𝑚 ∈ (0..^𝑁)))
5756biimpar 477 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
5857ad2antrr 726 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
591, 2, 3, 4signstfvc 34544 . . . . 5 (((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ ∧ 𝑔 ∈ Word ℝ ∧ 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁))))) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6052, 53, 58, 59syl3anc 1373 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6148, 51, 603eqtrd 2768 . . 3 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
62 wrdsplex 32890 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6362adantr 480 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6461, 63r19.29a 3137 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6526, 46, 64eqfnfvd 6972 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3904  wss 3905  ifcif 4478  {cpr 4581  {ctp 4583  cop 4585  cmpt 5176  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  0cc0 11028  1c1 11029  cmin 11365  -cneg 11366  0cn0 12402  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  sgncsgn 15011  Σcsu 15611  ndxcnx 17122  Basecbs 17138  +gcplusg 17179   Σg cgsu 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-sgn 15012  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator