Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstres Structured version   Visualization version   GIF version

Theorem signstres 34660
Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstres ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑁,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstres
Dummy variables 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsv.p . . . . . . . 8 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . . . . 8 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . . . . . 8 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . . . . . 8 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstf 34651 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
6 wrdf 14432 . . . . . . 7 ((𝑇𝐹) ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ)
7 ffn 6659 . . . . . . 7 ((𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
85, 6, 73syl 18 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
91, 2, 3, 4signstlen 34652 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝑇𝐹)) = (♯‘𝐹))
109oveq2d 7371 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝑇𝐹))) = (0..^(♯‘𝐹)))
1110fneq2d 6583 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))) ↔ (𝑇𝐹) Fn (0..^(♯‘𝐹))))
128, 11mpbid 232 . . . . 5 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘𝐹)))
13 fnresin 32628 . . . . 5 ((𝑇𝐹) Fn (0..^(♯‘𝐹)) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1412, 13syl 17 . . . 4 (𝐹 ∈ Word ℝ → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1514adantr 480 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
16 elfzuz3 13428 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
17 fzoss2 13594 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝐹)) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1918adantl 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
20 incom 4158 . . . . . 6 ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = ((0..^(♯‘𝐹)) ∩ (0..^𝑁))
21 dfss2 3916 . . . . . . 7 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) ↔ ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2221biimpi 216 . . . . . 6 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2320, 22eqtr3id 2782 . . . . 5 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) = (0..^𝑁))
2423fneq2d 6583 . . . 4 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2519, 24syl 17 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2615, 25mpbid 232 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁))
27 wrdres 32945 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
281, 2, 3, 4signstf 34651 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ)
29 wrdf 14432 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ)
30 ffn 6659 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
3127, 28, 29, 304syl 19 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
321, 2, 3, 4signstlen 34652 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
3327, 32syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
34 wrdfn 14442 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
35 fnssres 6612 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
3634, 18, 35syl2an 596 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
37 hashfn 14289 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
3836, 37syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
39 elfznn0 13527 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐹)) → 𝑁 ∈ ℕ0)
40 hashfzo0 14344 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
4139, 40syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘(0..^𝑁)) = 𝑁)
4241adantl 481 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(0..^𝑁)) = 𝑁)
4333, 38, 423eqtrd 2772 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = 𝑁)
4443oveq2d 7371 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) = (0..^𝑁))
4544fneq2d 6583 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) ↔ (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁)))
4631, 45mpbid 232 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁))
47 fvres 6850 . . . . 5 (𝑚 ∈ (0..^𝑁) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
4847ad3antlr 731 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
49 simpr 484 . . . . . 6 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
5049fveq2d 6835 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔)))
5150fveq1d 6833 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇𝐹)‘𝑚) = ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚))
5227ad3antrrr 730 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
53 simplr 768 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑔 ∈ Word ℝ)
5438, 42eqtrd 2768 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5554oveq2d 7371 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5655eleq2d 2819 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) ↔ 𝑚 ∈ (0..^𝑁)))
5756biimpar 477 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
5857ad2antrr 726 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
591, 2, 3, 4signstfvc 34659 . . . . 5 (((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ ∧ 𝑔 ∈ Word ℝ ∧ 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁))))) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6052, 53, 58, 59syl3anc 1373 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6148, 51, 603eqtrd 2772 . . 3 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
62 wrdsplex 32946 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6362adantr 480 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6461, 63r19.29a 3141 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6526, 46, 64eqfnfvd 6976 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cin 3897  wss 3898  ifcif 4476  {cpr 4579  {ctp 4581  cop 4583  cmpt 5176  cres 5623   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  cr 11016  0cc0 11017  1c1 11018  cmin 11355  -cneg 11356  0cn0 12392  cuz 12742  ...cfz 13414  ..^cfzo 13561  chash 14244  Word cword 14427   ++ cconcat 14484  sgncsgn 15000  Σcsu 15600  ndxcnx 17111  Basecbs 17127  +gcplusg 17168   Σg cgsu 17351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-sgn 15001  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mgm 18556  df-sgrp 18635  df-mnd 18651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator