| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprmod | Structured version Visualization version GIF version | ||
| Description: The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) |
| Ref | Expression |
|---|---|
| fpprmod | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fppr 47851 | . 2 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |
| 2 | uzuzle24 12785 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ (ℤ≥‘2)) | |
| 3 | nnz 12496 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 4 | eluz4nn 12790 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ ℕ) | |
| 5 | nnm1nn0 12429 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘4) → (𝑥 − 1) ∈ ℕ0) |
| 7 | zexpcl 13985 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑥 − 1) ∈ ℕ0) → (𝑁↑(𝑥 − 1)) ∈ ℤ) | |
| 8 | 3, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑁↑(𝑥 − 1)) ∈ ℤ) |
| 9 | modm1div 16177 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘2) ∧ (𝑁↑(𝑥 − 1)) ∈ ℤ) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) | |
| 10 | 2, 8, 9 | syl2an2 686 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
| 11 | 10 | bicomd 223 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1) ↔ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)) |
| 12 | 11 | anbi2d 630 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1))) |
| 13 | 12 | rabbidva 3402 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| 14 | 1, 13 | eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 {crab 3396 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 1c1 11014 − cmin 11351 ℕcn 12132 2c2 12187 4c4 12189 ℕ0cn0 12388 ℤcz 12475 ℤ≥cuz 12738 mod cmo 13775 ↑cexp 13970 ∥ cdvds 16165 ℙcprime 16584 FPPr cfppr 47849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-dvds 16166 df-fppr 47850 |
| This theorem is referenced by: fpprel 47853 |
| Copyright terms: Public domain | W3C validator |