![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprmod | Structured version Visualization version GIF version |
Description: The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprmod | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fppr 47651 | . 2 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |
2 | eluz4eluz2 12923 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ (ℤ≥‘2)) | |
3 | nnz 12632 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
4 | eluz4nn 12926 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ ℕ) | |
5 | nnm1nn0 12565 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘4) → (𝑥 − 1) ∈ ℕ0) |
7 | zexpcl 14114 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑥 − 1) ∈ ℕ0) → (𝑁↑(𝑥 − 1)) ∈ ℤ) | |
8 | 3, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑁↑(𝑥 − 1)) ∈ ℤ) |
9 | modm1div 16299 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘2) ∧ (𝑁↑(𝑥 − 1)) ∈ ℤ) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) | |
10 | 2, 8, 9 | syl2an2 686 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
11 | 10 | bicomd 223 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1) ↔ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)) |
12 | 11 | anbi2d 630 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1))) |
13 | 12 | rabbidva 3440 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
14 | 1, 13 | eqtrd 2775 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 {crab 3433 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 1c1 11154 − cmin 11490 ℕcn 12264 2c2 12319 4c4 12321 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 mod cmo 13906 ↑cexp 14099 ∥ cdvds 16287 ℙcprime 16705 FPPr cfppr 47649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-dvds 16288 df-fppr 47650 |
This theorem is referenced by: fpprel 47653 |
Copyright terms: Public domain | W3C validator |