| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprmod | Structured version Visualization version GIF version | ||
| Description: The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) |
| Ref | Expression |
|---|---|
| fpprmod | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fppr 47756 | . 2 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |
| 2 | uzuzle24 12780 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ (ℤ≥‘2)) | |
| 3 | nnz 12486 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 4 | eluz4nn 12785 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ ℕ) | |
| 5 | nnm1nn0 12419 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘4) → (𝑥 − 1) ∈ ℕ0) |
| 7 | zexpcl 13980 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑥 − 1) ∈ ℕ0) → (𝑁↑(𝑥 − 1)) ∈ ℤ) | |
| 8 | 3, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑁↑(𝑥 − 1)) ∈ ℤ) |
| 9 | modm1div 16172 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘2) ∧ (𝑁↑(𝑥 − 1)) ∈ ℤ) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) | |
| 10 | 2, 8, 9 | syl2an2 686 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
| 11 | 10 | bicomd 223 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1) ↔ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)) |
| 12 | 11 | anbi2d 630 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1))) |
| 13 | 12 | rabbidva 3401 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| 14 | 1, 13 | eqtrd 2766 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11004 − cmin 11341 ℕcn 12122 2c2 12177 4c4 12179 ℕ0cn0 12378 ℤcz 12465 ℤ≥cuz 12729 mod cmo 13770 ↑cexp 13965 ∥ cdvds 16160 ℙcprime 16579 FPPr cfppr 47754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-dvds 16161 df-fppr 47755 |
| This theorem is referenced by: fpprel 47758 |
| Copyright terms: Public domain | W3C validator |