![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprmod | Structured version Visualization version GIF version |
Description: The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprmod | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fppr 47247 | . 2 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |
2 | eluz4eluz2 12916 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ (ℤ≥‘2)) | |
3 | nnz 12626 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
4 | eluz4nn 12917 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ ℕ) | |
5 | nnm1nn0 12560 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘4) → (𝑥 − 1) ∈ ℕ0) |
7 | zexpcl 14091 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑥 − 1) ∈ ℕ0) → (𝑁↑(𝑥 − 1)) ∈ ℤ) | |
8 | 3, 6, 7 | syl2an 594 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑁↑(𝑥 − 1)) ∈ ℤ) |
9 | modm1div 16263 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘2) ∧ (𝑁↑(𝑥 − 1)) ∈ ℤ) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) | |
10 | 2, 8, 9 | syl2an2 684 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
11 | 10 | bicomd 222 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1) ↔ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)) |
12 | 11 | anbi2d 628 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1))) |
13 | 12 | rabbidva 3425 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
14 | 1, 13 | eqtrd 2765 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∉ wnel 3035 {crab 3418 class class class wbr 5152 ‘cfv 6553 (class class class)co 7423 1c1 11155 − cmin 11490 ℕcn 12259 2c2 12314 4c4 12316 ℕ0cn0 12519 ℤcz 12605 ℤ≥cuz 12869 mod cmo 13884 ↑cexp 14076 ∥ cdvds 16251 ℙcprime 16667 FPPr cfppr 47245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-sup 9481 df-inf 9482 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-n0 12520 df-z 12606 df-uz 12870 df-rp 13024 df-fl 13807 df-mod 13885 df-seq 14017 df-exp 14077 df-dvds 16252 df-fppr 47246 |
This theorem is referenced by: fpprel 47249 |
Copyright terms: Public domain | W3C validator |