![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpprmod | Structured version Visualization version GIF version |
Description: The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) |
Ref | Expression |
---|---|
fpprmod | ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fppr 47057 | . 2 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |
2 | eluz4eluz2 12894 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ (ℤ≥‘2)) | |
3 | nnz 12604 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
4 | eluz4nn 12895 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘4) → 𝑥 ∈ ℕ) | |
5 | nnm1nn0 12538 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘4) → (𝑥 − 1) ∈ ℕ0) |
7 | zexpcl 14068 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑥 − 1) ∈ ℕ0) → (𝑁↑(𝑥 − 1)) ∈ ℤ) | |
8 | 3, 6, 7 | syl2an 595 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑁↑(𝑥 − 1)) ∈ ℤ) |
9 | modm1div 16237 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘2) ∧ (𝑁↑(𝑥 − 1)) ∈ ℤ) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) | |
10 | 2, 8, 9 | syl2an2 685 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (((𝑁↑(𝑥 − 1)) mod 𝑥) = 1 ↔ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))) |
11 | 10 | bicomd 222 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → (𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1) ↔ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)) |
12 | 11 | anbi2d 629 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℤ≥‘4)) → ((𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1)) ↔ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1))) |
13 | 12 | rabbidva 3435 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))} = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
14 | 1, 13 | eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∉ wnel 3042 {crab 3428 class class class wbr 5143 ‘cfv 6543 (class class class)co 7415 1c1 11134 − cmin 11469 ℕcn 12237 2c2 12292 4c4 12294 ℕ0cn0 12497 ℤcz 12583 ℤ≥cuz 12847 mod cmo 13861 ↑cexp 14053 ∥ cdvds 16225 ℙcprime 16636 FPPr cfppr 47055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-dvds 16226 df-fppr 47056 |
This theorem is referenced by: fpprel 47059 |
Copyright terms: Public domain | W3C validator |