Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmafv2rnb Structured version   Visualization version   GIF version

Theorem fundmafv2rnb 45536
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fundmafv2rnb (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))

Proof of Theorem fundmafv2rnb
StepHypRef Expression
1 funres 6548 . 2 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
2 dmafv2rnb 45535 . 2 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
31, 2syl 17 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  {csn 4591  dom cdm 5638  ran crn 5639  cres 5640  Fun wfun 6495  ''''cafv2 45514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6453  df-fun 6503  df-dfat 45425  df-afv2 45515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator