Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmafv2rnb Structured version   Visualization version   GIF version

Theorem fundmafv2rnb 47344
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fundmafv2rnb (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))

Proof of Theorem fundmafv2rnb
StepHypRef Expression
1 funres 6531 . 2 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
2 dmafv2rnb 47343 . 2 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
31, 2syl 17 1 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113  {csn 4577  dom cdm 5621  ran crn 5622  cres 5623  Fun wfun 6483  ''''cafv2 47322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-dfat 47233  df-afv2 47323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator