MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprabg Structured version   Visualization version   GIF version

Theorem funoprabg 7561
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprabg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mosubopt 5524 . . 3 (∀𝑥𝑦∃*𝑧𝜑 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21alrimiv 1927 . 2 (∀𝑥𝑦∃*𝑧𝜑 → ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 dfoprab2 7498 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43funeqi 6595 . . 3 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)})
5 funopab 6609 . . 3 (Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
64, 5bitr2i 276 . 2 (∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
72, 6sylib 218 1 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1778  ∃*wmo 2538  cop 4640  {copab 5213  Fun wfun 6563  {coprab 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-fun 6571  df-oprab 7442
This theorem is referenced by:  funoprab  7562  fnoprabg  7563  oprabexd  8008
  Copyright terms: Public domain W3C validator