MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprabg Structured version   Visualization version   GIF version

Theorem funoprabg 7513
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprabg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mosubopt 5473 . . 3 (∀𝑥𝑦∃*𝑧𝜑 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21alrimiv 1927 . 2 (∀𝑥𝑦∃*𝑧𝜑 → ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 dfoprab2 7450 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43funeqi 6540 . . 3 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)})
5 funopab 6554 . . 3 (Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
64, 5bitr2i 276 . 2 (∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
72, 6sylib 218 1 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  ∃*wmo 2532  cop 4598  {copab 5172  Fun wfun 6508  {coprab 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516  df-oprab 7394
This theorem is referenced by:  funoprab  7514  fnoprabg  7515  oprabexd  7957
  Copyright terms: Public domain W3C validator