![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funoprab | Structured version Visualization version GIF version |
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
funoprab.1 | ⊢ ∃*𝑧𝜑 |
Ref | Expression |
---|---|
funoprab | ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funoprab.1 | . . 3 ⊢ ∃*𝑧𝜑 | |
2 | 1 | gen2 1794 | . 2 ⊢ ∀𝑥∀𝑦∃*𝑧𝜑 |
3 | funoprabg 7571 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 ∃*wmo 2541 Fun wfun 6567 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 df-oprab 7452 |
This theorem is referenced by: mpofun 7574 ovidig 7592 ovigg 7595 oprabex 8017 axaddf 11214 axmulf 11215 funtransport 35995 funray 36104 funline 36106 |
Copyright terms: Public domain | W3C validator |