MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprab Structured version   Visualization version   GIF version

Theorem funoprab 7491
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
Hypothesis
Ref Expression
funoprab.1 ∃*𝑧𝜑
Assertion
Ref Expression
funoprab Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprab
StepHypRef Expression
1 funoprab.1 . . 3 ∃*𝑧𝜑
21gen2 1796 . 2 𝑥𝑦∃*𝑧𝜑
3 funoprabg 7490 . 2 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
42, 3ax-mp 5 1 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1538  ∃*wmo 2531  Fun wfun 6493  {coprab 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-fun 6501  df-oprab 7373
This theorem is referenced by:  mpofun  7493  ovidig  7511  ovigg  7514  oprabex  7934  axaddf  11074  axmulf  11075  funtransport  35992  funray  36101  funline  36103
  Copyright terms: Public domain W3C validator