| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funoprab | Structured version Visualization version GIF version | ||
| Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| funoprab.1 | ⊢ ∃*𝑧𝜑 |
| Ref | Expression |
|---|---|
| funoprab | ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funoprab.1 | . . 3 ⊢ ∃*𝑧𝜑 | |
| 2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦∃*𝑧𝜑 |
| 3 | funoprabg 7467 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 ∃*wmo 2533 Fun wfun 6475 {coprab 7347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 df-oprab 7350 |
| This theorem is referenced by: mpofun 7470 ovidig 7488 ovigg 7491 oprabex 7908 axaddf 11036 axmulf 11037 funtransport 36073 funray 36182 funline 36184 |
| Copyright terms: Public domain | W3C validator |