Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprab Structured version   Visualization version   GIF version

Theorem funoprab 7089
 Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
Hypothesis
Ref Expression
funoprab.1 ∃*𝑧𝜑
Assertion
Ref Expression
funoprab Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprab
StepHypRef Expression
1 funoprab.1 . . 3 ∃*𝑧𝜑
21gen2 1760 . 2 𝑥𝑦∃*𝑧𝜑
3 funoprabg 7088 . 2 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
42, 3ax-mp 5 1 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 Colors of variables: wff setvar class Syntax hints:  ∀wal 1506  ∃*wmo 2546  Fun wfun 6180  {coprab 6976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rab 3092  df-v 3412  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-br 4927  df-opab 4989  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-fun 6188  df-oprab 6979 This theorem is referenced by:  mpofun  7091  ovidig  7107  ovigg  7110  oprabex  7488  axaddf  10364  axmulf  10365  funtransport  33046  funray  33155  funline  33157
 Copyright terms: Public domain W3C validator