| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funoprab | Structured version Visualization version GIF version | ||
| Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| funoprab.1 | ⊢ ∃*𝑧𝜑 |
| Ref | Expression |
|---|---|
| funoprab | ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funoprab.1 | . . 3 ⊢ ∃*𝑧𝜑 | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦∃*𝑧𝜑 |
| 3 | funoprabg 7474 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 ∃*wmo 2531 Fun wfun 6480 {coprab 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-fun 6488 df-oprab 7357 |
| This theorem is referenced by: mpofun 7477 ovidig 7495 ovigg 7498 oprabex 7918 axaddf 11058 axmulf 11059 funtransport 36007 funray 36116 funline 36118 |
| Copyright terms: Public domain | W3C validator |