![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmpo | Structured version Visualization version GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
Ref | Expression |
---|---|
resmpo | ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab2 7519 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)}) | |
2 | df-mpo 7406 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} | |
3 | 2 | reseq1i 5967 | . 2 ⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) |
4 | df-mpo 7406 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)} | |
5 | 1, 3, 4 | 3eqtr4g 2789 | 1 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 × cxp 5664 ↾ cres 5668 {coprab 7402 ∈ cmpo 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-opab 5201 df-xp 5672 df-rel 5673 df-res 5678 df-oprab 7405 df-mpo 7406 |
This theorem is referenced by: ofmres 7964 cantnfval2 9659 submefmnd 18807 pgrpsubgsymg 19314 sylow3lem5 19536 rhmsubclem1 20566 phssip 21511 mamures 22202 mdetrsca2 22416 mdetrlin2 22419 mdetunilem5 22428 smadiadetglem1 22483 smadiadetglem2 22484 pmatcollpw3lem 22595 txss12 23419 txbasval 23420 cnmpt2res 23491 fmucndlem 24106 cnmpopc 24759 oprpiece1res1 24786 oprpiece1res2 24787 cxpcn3 26587 ressplusf 32551 submatres 33241 cvmlift2lem6 34754 cvmlift2lem12 34760 icorempo 36688 elicores 44697 volicorescl 45720 rngchomrnghmresALTV 47108 rhmsubcALTVlem1 47110 |
Copyright terms: Public domain | W3C validator |