MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpo Structured version   Visualization version   GIF version

Theorem resmpo 7528
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpo ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem resmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resoprab2 7527 . 2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)})
2 df-mpo 7414 . . 3 (𝑥𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)}
32reseq1i 5978 . 2 ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷))
4 df-mpo 7414 . 2 (𝑥𝐶, 𝑦𝐷𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)}
51, 3, 43eqtr4g 2798 1 ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949   × cxp 5675  cres 5679  {coprab 7410  cmpo 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5212  df-xp 5683  df-rel 5684  df-res 5689  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  ofmres  7971  cantnfval2  9664  submefmnd  18776  pgrpsubgsymg  19277  sylow3lem5  19499  phssip  21211  mamures  21892  mdetrsca2  22106  mdetrlin2  22109  mdetunilem5  22118  smadiadetglem1  22173  smadiadetglem2  22174  pmatcollpw3lem  22285  txss12  23109  txbasval  23110  cnmpt2res  23181  fmucndlem  23796  cnmpopc  24444  oprpiece1res1  24467  oprpiece1res2  24468  cxpcn3  26256  ressplusf  32158  submatres  32817  cvmlift2lem6  34330  cvmlift2lem12  34336  icorempo  36280  elicores  44294  volicorescl  45317  rngchomrnghmresALTV  46942  rhmsubclem1  47032  rhmsubcALTVlem1  47050
  Copyright terms: Public domain W3C validator