MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpo Structured version   Visualization version   GIF version

Theorem resmpo 7469
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpo ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem resmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resoprab2 7468 . 2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)})
2 df-mpo 7354 . . 3 (𝑥𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)}
32reseq1i 5926 . 2 ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷))
4 df-mpo 7354 . 2 (𝑥𝐶, 𝑦𝐷𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)}
51, 3, 43eqtr4g 2789 1 ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903   × cxp 5617  cres 5621  {coprab 7350  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625  df-rel 5626  df-res 5631  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  elimampo  7486  ofmres  7919  cantnfval2  9565  submefmnd  18769  pgrpsubgsymg  19288  sylow3lem5  19510  rhmsubclem1  20570  phssip  21565  mamures  22282  mdetrsca2  22489  mdetrlin2  22492  mdetunilem5  22501  smadiadetglem1  22556  smadiadetglem2  22557  pmatcollpw3lem  22668  txss12  23490  txbasval  23491  cnmpt2res  23562  fmucndlem  24176  cnmpopc  24820  oprpiece1res1  24847  oprpiece1res2  24848  cxpcn3  26656  ressplusf  32905  submatres  33773  cvmlift2lem6  35281  cvmlift2lem12  35287  icorempo  37325  elicores  45514  volicorescl  46534  rngchomrnghmresALTV  48263  rhmsubcALTVlem1  48265  rescofuf  49078
  Copyright terms: Public domain W3C validator