MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpo Structured version   Visualization version   GIF version

Theorem resmpo 7553
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpo ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem resmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resoprab2 7552 . 2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)})
2 df-mpo 7436 . . 3 (𝑥𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)}
32reseq1i 5996 . 2 ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷))
4 df-mpo 7436 . 2 (𝑥𝐶, 𝑦𝐷𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)}
51, 3, 43eqtr4g 2800 1 ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963   × cxp 5687  cres 5691  {coprab 7432  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-rel 5696  df-res 5701  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  elimampo  7570  ofmres  8008  cantnfval2  9707  submefmnd  18921  pgrpsubgsymg  19442  sylow3lem5  19664  rhmsubclem1  20702  phssip  21694  mamures  22417  mdetrsca2  22626  mdetrlin2  22629  mdetunilem5  22638  smadiadetglem1  22693  smadiadetglem2  22694  pmatcollpw3lem  22805  txss12  23629  txbasval  23630  cnmpt2res  23701  fmucndlem  24316  cnmpopc  24969  oprpiece1res1  24996  oprpiece1res2  24997  cxpcn3  26806  ressplusf  32933  submatres  33767  cvmlift2lem6  35293  cvmlift2lem12  35299  icorempo  37334  elicores  45486  volicorescl  46509  rngchomrnghmresALTV  48123  rhmsubcALTVlem1  48125
  Copyright terms: Public domain W3C validator