Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpo Structured version   Visualization version   GIF version

Theorem resmpo 7266
 Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpo ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem resmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resoprab2 7265 . 2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)})
2 df-mpo 7155 . . 3 (𝑥𝐴, 𝑦𝐵𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)}
32reseq1i 5819 . 2 ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷))
4 df-mpo 7155 . 2 (𝑥𝐶, 𝑦𝐷𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝑧 = 𝐸)}
51, 3, 43eqtr4g 2818 1 ((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3858   × cxp 5522   ↾ cres 5526  {coprab 7151   ∈ cmpo 7152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-opab 5095  df-xp 5530  df-rel 5531  df-res 5536  df-oprab 7154  df-mpo 7155 This theorem is referenced by:  ofmres  7689  cantnfval2  9165  submefmnd  18126  pgrpsubgsymg  18604  sylow3lem5  18823  phssip  20423  mamures  21092  mdetrsca2  21304  mdetrlin2  21307  mdetunilem5  21316  smadiadetglem1  21371  smadiadetglem2  21372  pmatcollpw3lem  21483  txss12  22305  txbasval  22306  cnmpt2res  22377  fmucndlem  22992  cnmpopc  23629  oprpiece1res1  23652  oprpiece1res2  23653  cxpcn3  25436  ressplusf  30759  submatres  31277  cvmlift2lem6  32786  cvmlift2lem12  32792  icorempo  35070  elicores  42558  volicorescl  43580  rngchomrnghmresALTV  45009  rhmsubclem1  45099  rhmsubcALTVlem1  45117
 Copyright terms: Public domain W3C validator