![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmpo | Structured version Visualization version GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
Ref | Expression |
---|---|
resmpo | ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab2 7527 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)}) | |
2 | df-mpo 7414 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} | |
3 | 2 | reseq1i 5978 | . 2 ⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) |
4 | df-mpo 7414 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)} | |
5 | 1, 3, 4 | 3eqtr4g 2798 | 1 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 × cxp 5675 ↾ cres 5679 {coprab 7410 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 df-rel 5684 df-res 5689 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: ofmres 7971 cantnfval2 9664 submefmnd 18776 pgrpsubgsymg 19277 sylow3lem5 19499 phssip 21211 mamures 21892 mdetrsca2 22106 mdetrlin2 22109 mdetunilem5 22118 smadiadetglem1 22173 smadiadetglem2 22174 pmatcollpw3lem 22285 txss12 23109 txbasval 23110 cnmpt2res 23181 fmucndlem 23796 cnmpopc 24444 oprpiece1res1 24467 oprpiece1res2 24468 cxpcn3 26256 ressplusf 32158 submatres 32817 cvmlift2lem6 34330 cvmlift2lem12 34336 icorempo 36280 elicores 44294 volicorescl 45317 rngchomrnghmresALTV 46942 rhmsubclem1 47032 rhmsubcALTVlem1 47050 |
Copyright terms: Public domain | W3C validator |