Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resmpo | Structured version Visualization version GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
Ref | Expression |
---|---|
resmpo | ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab2 7265 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)}) | |
2 | df-mpo 7155 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} | |
3 | 2 | reseq1i 5819 | . 2 ⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) |
4 | df-mpo 7155 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)} | |
5 | 1, 3, 4 | 3eqtr4g 2818 | 1 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 × cxp 5522 ↾ cres 5526 {coprab 7151 ∈ cmpo 7152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 df-xp 5530 df-rel 5531 df-res 5536 df-oprab 7154 df-mpo 7155 |
This theorem is referenced by: ofmres 7689 cantnfval2 9165 submefmnd 18126 pgrpsubgsymg 18604 sylow3lem5 18823 phssip 20423 mamures 21092 mdetrsca2 21304 mdetrlin2 21307 mdetunilem5 21316 smadiadetglem1 21371 smadiadetglem2 21372 pmatcollpw3lem 21483 txss12 22305 txbasval 22306 cnmpt2res 22377 fmucndlem 22992 cnmpopc 23629 oprpiece1res1 23652 oprpiece1res2 23653 cxpcn3 25436 ressplusf 30759 submatres 31277 cvmlift2lem6 32786 cvmlift2lem12 32792 icorempo 35070 elicores 42558 volicorescl 43580 rngchomrnghmresALTV 45009 rhmsubclem1 45099 rhmsubcALTVlem1 45117 |
Copyright terms: Public domain | W3C validator |