MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresfunco Structured version   Visualization version   GIF version

Theorem funresfunco 6621
Description: Composition of two functions, generalization of funco 6620. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funresfunco ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funresfunco
StepHypRef Expression
1 funco 6620 . 2 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
2 ssid 4031 . . . . 5 ran 𝐺 ⊆ ran 𝐺
3 cores 6282 . . . . 5 (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺))
42, 3ax-mp 5 . . . 4 ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺)
54eqcomi 2749 . . 3 (𝐹𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺)
65funeqi 6601 . 2 (Fun (𝐹𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
71, 6sylibr 234 1 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976  ran crn 5701  cres 5702  ccom 5704  Fun wfun 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6577
This theorem is referenced by:  fnresfnco  46958
  Copyright terms: Public domain W3C validator