MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresfunco Structured version   Visualization version   GIF version

Theorem funresfunco 6557
Description: Composition of two functions, generalization of funco 6556. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funresfunco ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funresfunco
StepHypRef Expression
1 funco 6556 . 2 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
2 ssid 3969 . . . . 5 ran 𝐺 ⊆ ran 𝐺
3 cores 6222 . . . . 5 (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺))
42, 3ax-mp 5 . . . 4 ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺)
54eqcomi 2738 . . 3 (𝐹𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺)
65funeqi 6537 . 2 (Fun (𝐹𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
71, 6sylibr 234 1 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3914  ran crn 5639  cres 5640  ccom 5642  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-fun 6513
This theorem is referenced by:  fnresfnco  47042
  Copyright terms: Public domain W3C validator