MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresfunco Structured version   Visualization version   GIF version

Theorem funresfunco 6475
Description: Composition of two functions, generalization of funco 6474. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funresfunco ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funresfunco
StepHypRef Expression
1 funco 6474 . 2 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
2 ssid 3943 . . . . 5 ran 𝐺 ⊆ ran 𝐺
3 cores 6153 . . . . 5 (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺))
42, 3ax-mp 5 . . . 4 ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺)
54eqcomi 2747 . . 3 (𝐹𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺)
65funeqi 6455 . 2 (Fun (𝐹𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
71, 6sylibr 233 1 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wss 3887  ran crn 5590  cres 5591  ccom 5593  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-fun 6435
This theorem is referenced by:  fnresfnco  44535
  Copyright terms: Public domain W3C validator