MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresfunco Structured version   Visualization version   GIF version

Theorem funresfunco 6583
Description: Composition of two functions, generalization of funco 6582. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funresfunco ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funresfunco
StepHypRef Expression
1 funco 6582 . 2 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
2 ssid 3999 . . . . 5 ran 𝐺 ⊆ ran 𝐺
3 cores 6242 . . . . 5 (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺))
42, 3ax-mp 5 . . . 4 ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺)
54eqcomi 2735 . . 3 (𝐹𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺)
65funeqi 6563 . 2 (Fun (𝐹𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
71, 6sylibr 233 1 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wss 3943  ran crn 5670  cres 5671  ccom 5673  Fun wfun 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-fun 6539
This theorem is referenced by:  fnresfnco  46328
  Copyright terms: Public domain W3C validator