![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresfunco | Structured version Visualization version GIF version |
Description: Composition of two functions, generalization of funco 6587. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
funresfunco | ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funco 6587 | . 2 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) | |
2 | ssid 3995 | . . . . 5 ⊢ ran 𝐺 ⊆ ran 𝐺 | |
3 | cores 6248 | . . . . 5 ⊢ (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺) |
5 | 4 | eqcomi 2734 | . . 3 ⊢ (𝐹 ∘ 𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺) |
6 | 5 | funeqi 6568 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) |
7 | 1, 6 | sylibr 233 | 1 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ⊆ wss 3940 ran crn 5673 ↾ cres 5674 ∘ ccom 5676 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-fun 6544 |
This theorem is referenced by: fnresfnco 46485 |
Copyright terms: Public domain | W3C validator |