MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresfunco Structured version   Visualization version   GIF version

Theorem funresfunco 6527
Description: Composition of two functions, generalization of funco 6526. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funresfunco ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funresfunco
StepHypRef Expression
1 funco 6526 . 2 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
2 ssid 3953 . . . . 5 ran 𝐺 ⊆ ran 𝐺
3 cores 6201 . . . . 5 (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺))
42, 3ax-mp 5 . . . 4 ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹𝐺)
54eqcomi 2742 . . 3 (𝐹𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺)
65funeqi 6507 . 2 (Fun (𝐹𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺))
71, 6sylibr 234 1 ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wss 3898  ran crn 5620  cres 5621  ccom 5623  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-fun 6488
This theorem is referenced by:  fnresfnco  47166
  Copyright terms: Public domain W3C validator