Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funresfunco | Structured version Visualization version GIF version |
Description: Composition of two functions, generalization of funco 6381. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
funresfunco | ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funco 6381 | . 2 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) | |
2 | ssid 3917 | . . . . 5 ⊢ ran 𝐺 ⊆ ran 𝐺 | |
3 | cores 6085 | . . . . 5 ⊢ (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺) |
5 | 4 | eqcomi 2768 | . . 3 ⊢ (𝐹 ∘ 𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺) |
6 | 5 | funeqi 6362 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) |
7 | 1, 6 | sylibr 237 | 1 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ⊆ wss 3861 ran crn 5530 ↾ cres 5531 ∘ ccom 5533 Fun wfun 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-fun 6343 |
This theorem is referenced by: fnresfnco 44045 |
Copyright terms: Public domain | W3C validator |