Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funresfunco | Structured version Visualization version GIF version |
Description: Composition of two functions, generalization of funco 6474. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
funresfunco | ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funco 6474 | . 2 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) | |
2 | ssid 3943 | . . . . 5 ⊢ ran 𝐺 ⊆ ran 𝐺 | |
3 | cores 6153 | . . . . 5 ⊢ (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺) |
5 | 4 | eqcomi 2747 | . . 3 ⊢ (𝐹 ∘ 𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺) |
6 | 5 | funeqi 6455 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) |
7 | 1, 6 | sylibr 233 | 1 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 |
This theorem is referenced by: fnresfnco 44535 |
Copyright terms: Public domain | W3C validator |