| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresfunco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions, generalization of funco 6556. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| Ref | Expression |
|---|---|
| funresfunco | ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funco 6556 | . 2 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) | |
| 2 | ssid 3969 | . . . . 5 ⊢ ran 𝐺 ⊆ ran 𝐺 | |
| 3 | cores 6222 | . . . . 5 ⊢ (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺) |
| 5 | 4 | eqcomi 2738 | . . 3 ⊢ (𝐹 ∘ 𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺) |
| 6 | 5 | funeqi 6537 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) |
| 7 | 1, 6 | sylibr 234 | 1 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fun 6513 |
| This theorem is referenced by: fnresfnco 47042 |
| Copyright terms: Public domain | W3C validator |