| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4ad 2944 fvclss 7215 suppssr 8174 suppssrg 8175 suppofssd 8182 eceqoveq 8795 fofinf1o 9283 cantnfp1lem3 9633 cantnfp1 9634 mul0or 11818 rimul 12177 rlimuni 15516 pc2dvds 16850 divsfval 17510 pleval2i 18295 lssvs0or 21020 lspsnat 21055 psdmul 22053 lmmo 23267 filssufilg 23798 hausflimi 23867 fclscf 23912 xrsmopn 24701 rectbntr0 24721 bcth3 25231 limcco 25794 ig1pdvds 26085 plyco0 26097 plypf1 26117 coeeulem 26129 coeidlem 26142 coeid3 26145 coemullem 26155 coemulhi 26159 coemulc 26160 dgradd2 26174 vieta1lem2 26219 dvtaylp 26278 musum 27101 perfectlem2 27141 dchrelbas3 27149 dchrmullid 27163 dchreq 27169 dchrsum 27180 gausslemma2dlem4 27280 dchrisum0re 27424 muls0ord 28088 coltr 28574 lmieu 28711 pthisspthorcycl 29732 elspansn5 31503 atomli 32311 onsucconni 36425 poimirlem8 37622 poimirlem9 37623 poimirlem18 37632 poimirlem21 37635 poimirlem22 37636 poimirlem26 37640 lshpcmp 38981 lsator0sp 38994 atnle 39310 atlatmstc 39312 osumcllem8N 39957 osumcllem11N 39960 pexmidlem5N 39968 pexmidlem8N 39971 dochsat0 41451 dochexmidlem5 41458 dochexmidlem8 41461 aks6d1c4 42112 sn-remul0ord 42396 fsuppind 42578 congabseq 42963 dflim5 43318 mnringmulrcld 44217 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |