| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon4ad 2948 fvclss 7184 suppssr 8134 suppssrg 8135 suppofssd 8142 eceqoveq 8755 fofinf1o 9227 cantnfp1lem3 9581 cantnfp1 9582 mul0or 11768 rimul 12127 rlimuni 15464 pc2dvds 16798 divsfval 17459 pleval2i 18248 lssvs0or 21056 lspsnat 21091 psdmul 22100 lmmo 23315 filssufilg 23846 hausflimi 23915 fclscf 23960 xrsmopn 24748 rectbntr0 24768 bcth3 25278 limcco 25841 ig1pdvds 26132 plyco0 26144 plypf1 26164 coeeulem 26176 coeidlem 26189 coeid3 26192 coemullem 26202 coemulhi 26206 coemulc 26207 dgradd2 26221 vieta1lem2 26266 dvtaylp 26325 musum 27148 perfectlem2 27188 dchrelbas3 27196 dchrmullid 27210 dchreq 27216 dchrsum 27227 gausslemma2dlem4 27327 dchrisum0re 27471 muls0ord 28144 coltr 28645 lmieu 28782 pthisspthorcycl 29801 elspansn5 31575 atomli 32383 onsucconni 36553 poimirlem8 37741 poimirlem9 37742 poimirlem18 37751 poimirlem21 37754 poimirlem22 37755 poimirlem26 37759 lshpcmp 39160 lsator0sp 39173 atnle 39489 atlatmstc 39491 osumcllem8N 40135 osumcllem11N 40138 pexmidlem5N 40146 pexmidlem8N 40149 dochsat0 41629 dochexmidlem5 41636 dochexmidlem8 41639 aks6d1c4 42290 sn-remul0ord 42578 fsuppind 42748 congabseq 43131 dflim5 43486 mnringmulrcld 44385 perfectALTVlem2 47884 |
| Copyright terms: Public domain | W3C validator |