| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon4ad 2947 fvclss 7170 suppssr 8120 suppssrg 8121 suppofssd 8128 eceqoveq 8741 fofinf1o 9211 cantnfp1lem3 9565 cantnfp1 9566 mul0or 11752 rimul 12111 rlimuni 15452 pc2dvds 16786 divsfval 17446 pleval2i 18235 lssvs0or 21042 lspsnat 21077 psdmul 22076 lmmo 23290 filssufilg 23821 hausflimi 23890 fclscf 23935 xrsmopn 24723 rectbntr0 24743 bcth3 25253 limcco 25816 ig1pdvds 26107 plyco0 26119 plypf1 26139 coeeulem 26151 coeidlem 26164 coeid3 26167 coemullem 26177 coemulhi 26181 coemulc 26182 dgradd2 26196 vieta1lem2 26241 dvtaylp 26300 musum 27123 perfectlem2 27163 dchrelbas3 27171 dchrmullid 27185 dchreq 27191 dchrsum 27202 gausslemma2dlem4 27302 dchrisum0re 27446 muls0ord 28119 coltr 28620 lmieu 28757 pthisspthorcycl 29775 elspansn5 31546 atomli 32354 onsucconni 36471 poimirlem8 37668 poimirlem9 37669 poimirlem18 37678 poimirlem21 37681 poimirlem22 37682 poimirlem26 37686 lshpcmp 39027 lsator0sp 39040 atnle 39356 atlatmstc 39358 osumcllem8N 40002 osumcllem11N 40005 pexmidlem5N 40013 pexmidlem8N 40016 dochsat0 41496 dochexmidlem5 41503 dochexmidlem8 41506 aks6d1c4 42157 sn-remul0ord 42441 fsuppind 42623 congabseq 43007 dflim5 43362 mnringmulrcld 44261 perfectALTVlem2 47753 |
| Copyright terms: Public domain | W3C validator |