| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4ad 2944 fvclss 7181 suppssr 8135 suppssrg 8136 suppofssd 8143 eceqoveq 8756 fofinf1o 9241 cantnfp1lem3 9595 cantnfp1 9596 mul0or 11778 rimul 12137 rlimuni 15475 pc2dvds 16809 divsfval 17469 pleval2i 18258 lssvs0or 21035 lspsnat 21070 psdmul 22069 lmmo 23283 filssufilg 23814 hausflimi 23883 fclscf 23928 xrsmopn 24717 rectbntr0 24737 bcth3 25247 limcco 25810 ig1pdvds 26101 plyco0 26113 plypf1 26133 coeeulem 26145 coeidlem 26158 coeid3 26161 coemullem 26171 coemulhi 26175 coemulc 26176 dgradd2 26190 vieta1lem2 26235 dvtaylp 26294 musum 27117 perfectlem2 27157 dchrelbas3 27165 dchrmullid 27179 dchreq 27185 dchrsum 27196 gausslemma2dlem4 27296 dchrisum0re 27440 muls0ord 28111 coltr 28610 lmieu 28747 pthisspthorcycl 29765 elspansn5 31536 atomli 32344 onsucconni 36413 poimirlem8 37610 poimirlem9 37611 poimirlem18 37620 poimirlem21 37623 poimirlem22 37624 poimirlem26 37628 lshpcmp 38969 lsator0sp 38982 atnle 39298 atlatmstc 39300 osumcllem8N 39945 osumcllem11N 39948 pexmidlem5N 39956 pexmidlem8N 39959 dochsat0 41439 dochexmidlem5 41446 dochexmidlem8 41449 aks6d1c4 42100 sn-remul0ord 42384 fsuppind 42566 congabseq 42950 dflim5 43305 mnringmulrcld 44204 perfectALTVlem2 47710 |
| Copyright terms: Public domain | W3C validator |