![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2940 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | biimtrrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: necon4ad 2958 fvclss 7243 suppssr 8185 suppssrg 8186 suppofssd 8192 eceqoveq 8820 fofinf1o 9331 cantnfp1lem3 9679 cantnfp1 9680 mul0or 11859 inelr 12207 rimul 12208 rlimuni 15499 pc2dvds 16817 divsfval 17498 pleval2i 18294 lssvs0or 20869 lspsnat 20904 lmmo 23105 filssufilg 23636 hausflimi 23705 fclscf 23750 xrsmopn 24549 rectbntr0 24569 bcth3 25080 limcco 25643 ig1pdvds 25930 plyco0 25942 plypf1 25962 coeeulem 25974 coeidlem 25987 coeid3 25990 coemullem 26000 coemulhi 26004 coemulc 26005 dgradd2 26019 vieta1lem2 26061 dvtaylp 26119 musum 26932 perfectlem2 26970 dchrelbas3 26978 dchrmullid 26992 dchreq 26998 dchrsum 27009 gausslemma2dlem4 27109 dchrisum0re 27253 coltr 28166 lmieu 28303 elspansn5 31095 atomli 31903 pthisspthorcycl 34418 onsucconni 35626 poimirlem8 36800 poimirlem9 36801 poimirlem18 36810 poimirlem21 36813 poimirlem22 36814 poimirlem26 36818 lshpcmp 38162 lsator0sp 38175 atnle 38491 atlatmstc 38493 osumcllem8N 39138 osumcllem11N 39141 pexmidlem5N 39149 pexmidlem8N 39152 dochsat0 40632 dochexmidlem5 40639 dochexmidlem8 40642 fsuppind 41465 congabseq 42016 dflim5 42382 mnringmulrcld 43290 perfectALTVlem2 46689 |
Copyright terms: Public domain | W3C validator |