Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bir 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon4ad 2961 fvclss 7097 suppssr 7983 suppssrg 7984 suppofssd 7990 eceqoveq 8569 fofinf1o 9024 cantnfp1lem3 9368 cantnfp1 9369 mul0or 11545 inelr 11893 rimul 11894 rlimuni 15187 pc2dvds 16508 divsfval 17175 pleval2i 17969 lssvs0or 20287 lspsnat 20322 lmmo 22439 filssufilg 22970 hausflimi 23039 fclscf 23084 xrsmopn 23881 rectbntr0 23901 bcth3 24400 limcco 24962 ig1pdvds 25246 plyco0 25258 plypf1 25278 coeeulem 25290 coeidlem 25303 coeid3 25306 coemullem 25316 coemulhi 25320 coemulc 25321 dgradd2 25334 vieta1lem2 25376 dvtaylp 25434 musum 26245 perfectlem2 26283 dchrelbas3 26291 dchrmulid2 26305 dchreq 26311 dchrsum 26322 gausslemma2dlem4 26422 dchrisum0re 26566 coltr 26912 lmieu 27049 elspansn5 29837 atomli 30645 pthisspthorcycl 32990 onsucconni 34553 poimirlem8 35712 poimirlem9 35713 poimirlem18 35722 poimirlem21 35725 poimirlem22 35726 poimirlem26 35730 lshpcmp 36929 lsator0sp 36942 atnle 37258 atlatmstc 37260 osumcllem8N 37904 osumcllem11N 37907 pexmidlem5N 37915 pexmidlem8N 37918 dochsat0 39398 dochexmidlem5 39405 dochexmidlem8 39408 fsuppind 40202 congabseq 40712 mnringmulrcld 41735 perfectALTVlem2 45062 |
Copyright terms: Public domain | W3C validator |