Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2953 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bir 246 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 147 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2953 |
This theorem is referenced by: necon4ad 2971 fvclss 6991 suppssr 7868 suppssrg 7869 suppofssd 7875 eceqoveq 8410 fofinf1o 8822 cantnfp1lem3 9166 cantnfp1 9167 mul0or 11308 inelr 11654 rimul 11655 rlimuni 14945 pc2dvds 16260 divsfval 16868 pleval2i 17630 lssvs0or 19940 lspsnat 19975 lmmo 22070 filssufilg 22601 hausflimi 22670 fclscf 22715 xrsmopn 23503 rectbntr0 23523 bcth3 24021 limcco 24582 ig1pdvds 24866 plyco0 24878 plypf1 24898 coeeulem 24910 coeidlem 24923 coeid3 24926 coemullem 24936 coemulhi 24940 coemulc 24941 dgradd2 24954 vieta1lem2 24996 dvtaylp 25054 musum 25865 perfectlem2 25903 dchrelbas3 25911 dchrmulid2 25925 dchreq 25931 dchrsum 25942 gausslemma2dlem4 26042 dchrisum0re 26186 coltr 26530 lmieu 26667 elspansn5 29446 atomli 30254 pthisspthorcycl 32596 onsucconni 34165 poimirlem8 35335 poimirlem9 35336 poimirlem18 35345 poimirlem21 35348 poimirlem22 35349 poimirlem26 35353 lshpcmp 36554 lsator0sp 36567 atnle 36883 atlatmstc 36885 osumcllem8N 37529 osumcllem11N 37532 pexmidlem5N 37540 pexmidlem8N 37543 dochsat0 39023 dochexmidlem5 39030 dochexmidlem8 39033 fsuppind 39774 congabseq 40278 mnringmulrcld 41299 perfectALTVlem2 44597 |
Copyright terms: Public domain | W3C validator |