![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 3000 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bir 235 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 142 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1658 ≠ wne 2999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 3000 |
This theorem is referenced by: necon4ad 3018 fvclss 6755 suppssr 7591 eceqoveq 8118 fofinf1o 8510 cantnfp1lem3 8854 cantnfp1 8855 mul0or 10992 inelr 11340 rimul 11341 rlimuni 14658 pc2dvds 15954 divsfval 16560 pleval2i 17317 lssvs0or 19469 lspsnat 19505 lmmo 21555 filssufilg 22085 hausflimi 22154 fclscf 22199 xrsmopn 22985 rectbntr0 23005 bcth3 23499 limcco 24056 ig1pdvds 24335 plyco0 24347 plypf1 24367 coeeulem 24379 coeidlem 24392 coeid3 24395 coemullem 24405 coemulhi 24409 coemulc 24410 dgradd2 24423 vieta1lem2 24465 dvtaylp 24523 musum 25330 perfectlem2 25368 dchrelbas3 25376 dchrmulid2 25390 dchreq 25396 dchrsum 25407 gausslemma2dlem4 25507 dchrisum0re 25615 coltr 25959 lmieu 26093 elspansn5 28988 atomli 29796 onsucconni 32969 poimirlem8 33961 poimirlem9 33962 poimirlem18 33971 poimirlem21 33974 poimirlem22 33975 poimirlem26 33979 lshpcmp 35063 lsator0sp 35076 atnle 35392 atlatmstc 35394 osumcllem8N 36038 osumcllem11N 36041 pexmidlem5N 36049 pexmidlem8N 36052 dochsat0 37532 dochexmidlem5 37539 dochexmidlem8 37542 congabseq 38384 perfectALTVlem2 42461 |
Copyright terms: Public domain | W3C validator |