![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2938 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: necon4ad 2956 fvclss 7260 suppssr 8218 suppssrg 8219 suppofssd 8226 eceqoveq 8860 fofinf1o 9369 cantnfp1lem3 9717 cantnfp1 9718 mul0or 11900 inelr 12253 rimul 12254 rlimuni 15582 pc2dvds 16912 divsfval 17593 pleval2i 18393 lssvs0or 21129 lspsnat 21164 psdmul 22187 lmmo 23403 filssufilg 23934 hausflimi 24003 fclscf 24048 xrsmopn 24847 rectbntr0 24867 bcth3 25378 limcco 25942 ig1pdvds 26233 plyco0 26245 plypf1 26265 coeeulem 26277 coeidlem 26290 coeid3 26293 coemullem 26303 coemulhi 26307 coemulc 26308 dgradd2 26322 vieta1lem2 26367 dvtaylp 26426 musum 27248 perfectlem2 27288 dchrelbas3 27296 dchrmullid 27310 dchreq 27316 dchrsum 27327 gausslemma2dlem4 27427 dchrisum0re 27571 muls0ord 28225 coltr 28669 lmieu 28806 elspansn5 31602 atomli 32410 pthisspthorcycl 35112 onsucconni 36419 poimirlem8 37614 poimirlem9 37615 poimirlem18 37624 poimirlem21 37627 poimirlem22 37628 poimirlem26 37632 lshpcmp 38969 lsator0sp 38982 atnle 39298 atlatmstc 39300 osumcllem8N 39945 osumcllem11N 39948 pexmidlem5N 39956 pexmidlem8N 39959 dochsat0 41439 dochexmidlem5 41446 dochexmidlem8 41449 aks6d1c4 42105 fsuppind 42576 congabseq 42962 dflim5 43318 mnringmulrcld 44223 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |