| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon4ad 2945 fvclss 7218 suppssr 8177 suppssrg 8178 suppofssd 8185 eceqoveq 8798 fofinf1o 9290 cantnfp1lem3 9640 cantnfp1 9641 mul0or 11825 rimul 12184 rlimuni 15523 pc2dvds 16857 divsfval 17517 pleval2i 18302 lssvs0or 21027 lspsnat 21062 psdmul 22060 lmmo 23274 filssufilg 23805 hausflimi 23874 fclscf 23919 xrsmopn 24708 rectbntr0 24728 bcth3 25238 limcco 25801 ig1pdvds 26092 plyco0 26104 plypf1 26124 coeeulem 26136 coeidlem 26149 coeid3 26152 coemullem 26162 coemulhi 26166 coemulc 26167 dgradd2 26181 vieta1lem2 26226 dvtaylp 26285 musum 27108 perfectlem2 27148 dchrelbas3 27156 dchrmullid 27170 dchreq 27176 dchrsum 27187 gausslemma2dlem4 27287 dchrisum0re 27431 muls0ord 28095 coltr 28581 lmieu 28718 pthisspthorcycl 29739 elspansn5 31510 atomli 32318 onsucconni 36432 poimirlem8 37629 poimirlem9 37630 poimirlem18 37639 poimirlem21 37642 poimirlem22 37643 poimirlem26 37647 lshpcmp 38988 lsator0sp 39001 atnle 39317 atlatmstc 39319 osumcllem8N 39964 osumcllem11N 39967 pexmidlem5N 39975 pexmidlem8N 39978 dochsat0 41458 dochexmidlem5 41465 dochexmidlem8 41468 aks6d1c4 42119 sn-remul0ord 42403 fsuppind 42585 congabseq 42970 dflim5 43325 mnringmulrcld 44224 perfectALTVlem2 47727 |
| Copyright terms: Public domain | W3C validator |