| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon4ad 2951 fvclss 7232 suppssr 8192 suppssrg 8193 suppofssd 8200 eceqoveq 8834 fofinf1o 9342 cantnfp1lem3 9692 cantnfp1 9693 mul0or 11875 inelr 12228 rimul 12229 rlimuni 15564 pc2dvds 16897 divsfval 17559 pleval2i 18344 lssvs0or 21069 lspsnat 21104 psdmul 22102 lmmo 23316 filssufilg 23847 hausflimi 23916 fclscf 23961 xrsmopn 24750 rectbntr0 24770 bcth3 25281 limcco 25844 ig1pdvds 26135 plyco0 26147 plypf1 26167 coeeulem 26179 coeidlem 26192 coeid3 26195 coemullem 26205 coemulhi 26209 coemulc 26210 dgradd2 26224 vieta1lem2 26269 dvtaylp 26328 musum 27151 perfectlem2 27191 dchrelbas3 27199 dchrmullid 27213 dchreq 27219 dchrsum 27230 gausslemma2dlem4 27330 dchrisum0re 27474 muls0ord 28128 coltr 28572 lmieu 28709 pthisspthorcycl 29730 elspansn5 31501 atomli 32309 onsucconni 36401 poimirlem8 37598 poimirlem9 37599 poimirlem18 37608 poimirlem21 37611 poimirlem22 37612 poimirlem26 37616 lshpcmp 38952 lsator0sp 38965 atnle 39281 atlatmstc 39283 osumcllem8N 39928 osumcllem11N 39931 pexmidlem5N 39939 pexmidlem8N 39942 dochsat0 41422 dochexmidlem5 41429 dochexmidlem8 41432 aks6d1c4 42083 fsuppind 42560 congabseq 42945 dflim5 43300 mnringmulrcld 44200 perfectALTVlem2 47684 |
| Copyright terms: Public domain | W3C validator |