Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bd | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1bd.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon1bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bd.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bir 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon4ad 2962 fvclss 7115 suppssr 8012 suppssrg 8013 suppofssd 8019 eceqoveq 8611 fofinf1o 9094 cantnfp1lem3 9438 cantnfp1 9439 mul0or 11615 inelr 11963 rimul 11964 rlimuni 15259 pc2dvds 16580 divsfval 17258 pleval2i 18054 lssvs0or 20372 lspsnat 20407 lmmo 22531 filssufilg 23062 hausflimi 23131 fclscf 23176 xrsmopn 23975 rectbntr0 23995 bcth3 24495 limcco 25057 ig1pdvds 25341 plyco0 25353 plypf1 25373 coeeulem 25385 coeidlem 25398 coeid3 25401 coemullem 25411 coemulhi 25415 coemulc 25416 dgradd2 25429 vieta1lem2 25471 dvtaylp 25529 musum 26340 perfectlem2 26378 dchrelbas3 26386 dchrmulid2 26400 dchreq 26406 dchrsum 26417 gausslemma2dlem4 26517 dchrisum0re 26661 coltr 27008 lmieu 27145 elspansn5 29936 atomli 30744 pthisspthorcycl 33090 onsucconni 34626 poimirlem8 35785 poimirlem9 35786 poimirlem18 35795 poimirlem21 35798 poimirlem22 35799 poimirlem26 35803 lshpcmp 37002 lsator0sp 37015 atnle 37331 atlatmstc 37333 osumcllem8N 37977 osumcllem11N 37980 pexmidlem5N 37988 pexmidlem8N 37991 dochsat0 39471 dochexmidlem5 39478 dochexmidlem8 39481 fsuppind 40279 congabseq 40796 mnringmulrcld 41846 perfectALTVlem2 45174 |
Copyright terms: Public domain | W3C validator |