MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Visualization version   GIF version

Theorem ccatco 14188
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))

Proof of Theorem ccatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 14185 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
213adant2 1128 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
3 lenco 14185 . . . . . . 7 ((𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
433adant1 1127 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
52, 4oveq12d 7153 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇))) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7151 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
76mpteq1d 5119 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
82oveq2d 7151 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
98adantr 484 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
109eleq2d 2875 . . . . . 6 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘(𝐹𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1110ifbid 4447 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))))
12 wrdf 13862 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
13123ad2ant1 1130 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1413adantr 484 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1514ffnd 6488 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 Fn (0..^(♯‘𝑆)))
16 fvco2 6735 . . . . . . . 8 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
1715, 16sylan 583 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
18 iftrue 4431 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
1918adantl 485 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2017, 19eqtr4d 2836 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
21 wrdf 13862 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴𝑇:(0..^(♯‘𝑇))⟶𝐴)
22213ad2ant2 1131 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2322ad2antrr 725 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2423ffnd 6488 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇 Fn (0..^(♯‘𝑇)))
25 lencl 13876 . . . . . . . . . . . . 13 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2625nn0zd 12073 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ)
27263ad2ant1 1130 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑆) ∈ ℤ)
28 fzospliti 13064 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
2928ancoms 462 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℤ ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3027, 29sylan 583 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3130orcanai 1000 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
32 lencl 13876 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℕ0)
3332nn0zd 12073 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℤ)
34333ad2ant2 1131 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑇) ∈ ℤ)
3534ad2antrr 725 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℤ)
36 fzosubel3 13093 . . . . . . . . 9 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
3731, 35, 36syl2anc 587 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
38 fvco2 6735 . . . . . . . 8 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
3924, 37, 38syl2anc 587 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
402oveq2d 7151 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 − (♯‘(𝐹𝑆))) = (𝑥 − (♯‘𝑆)))
4140fveq2d 6649 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
4241ad2antrr 725 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
43 iffalse 4434 . . . . . . . 8 𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4443adantl 485 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4539, 42, 443eqtr4d 2843 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4620, 45ifeqda 4460 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4711, 46eqtrd 2833 . . . 4 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4847mpteq2dva 5125 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
497, 48eqtr2d 2834 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
5014ffvelrnda 6828 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐴)
5123, 37ffvelrnd 6829 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐴)
5250, 51ifclda 4459 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐴)
53 ccatfval 13916 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
54533adant3 1129 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
55 simp3 1135 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
5655feqmptd 6708 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
57 fveq2 6645 . . . 4 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
58 fvif 6661 . . . 4 (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
5957, 58eqtrdi 2849 . . 3 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
6052, 54, 56, 59fmptco 6868 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
61 ffun 6490 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
62613ad2ant3 1132 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → Fun 𝐹)
63 simp1 1133 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆 ∈ Word 𝐴)
64 cofunexg 7632 . . . 4 ((Fun 𝐹𝑆 ∈ Word 𝐴) → (𝐹𝑆) ∈ V)
6562, 63, 64syl2anc 587 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑆) ∈ V)
66 simp2 1134 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇 ∈ Word 𝐴)
67 cofunexg 7632 . . . 4 ((Fun 𝐹𝑇 ∈ Word 𝐴) → (𝐹𝑇) ∈ V)
6862, 66, 67syl2anc 587 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑇) ∈ V)
69 ccatfval 13916 . . 3 (((𝐹𝑆) ∈ V ∧ (𝐹𝑇) ∈ V) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7065, 68, 69syl2anc 587 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7149, 60, 703eqtr4d 2843 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  ifcif 4425  cmpt 5110  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529  cmin 10859  cz 11969  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914
This theorem is referenced by:  cats1co  14209  frmdgsum  18019  frmdup1  18021  efginvrel2  18845  frgpuplem  18890  frgpup1  18893  mrsubccat  32878
  Copyright terms: Public domain W3C validator