MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Visualization version   GIF version

Theorem ccatco 14782
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))

Proof of Theorem ccatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 14779 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
213adant2 1131 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
3 lenco 14779 . . . . . . 7 ((𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
433adant1 1130 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
52, 4oveq12d 7423 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇))) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7421 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
76mpteq1d 5242 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
82oveq2d 7421 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
98adantr 481 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
109eleq2d 2819 . . . . . 6 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘(𝐹𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1110ifbid 4550 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))))
12 wrdf 14465 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1413adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1514ffnd 6715 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 Fn (0..^(♯‘𝑆)))
16 fvco2 6985 . . . . . . . 8 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
1715, 16sylan 580 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
18 iftrue 4533 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
1918adantl 482 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2017, 19eqtr4d 2775 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
21 wrdf 14465 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴𝑇:(0..^(♯‘𝑇))⟶𝐴)
22213ad2ant2 1134 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2322ad2antrr 724 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2423ffnd 6715 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇 Fn (0..^(♯‘𝑇)))
25 lencl 14479 . . . . . . . . . . . . 13 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2625nn0zd 12580 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ)
27263ad2ant1 1133 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑆) ∈ ℤ)
28 fzospliti 13660 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
2928ancoms 459 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℤ ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3027, 29sylan 580 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3130orcanai 1001 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
32 lencl 14479 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℕ0)
3332nn0zd 12580 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℤ)
34333ad2ant2 1134 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑇) ∈ ℤ)
3534ad2antrr 724 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℤ)
36 fzosubel3 13689 . . . . . . . . 9 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
3731, 35, 36syl2anc 584 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
38 fvco2 6985 . . . . . . . 8 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
3924, 37, 38syl2anc 584 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
402oveq2d 7421 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 − (♯‘(𝐹𝑆))) = (𝑥 − (♯‘𝑆)))
4140fveq2d 6892 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
4241ad2antrr 724 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
43 iffalse 4536 . . . . . . . 8 𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4443adantl 482 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4539, 42, 443eqtr4d 2782 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4620, 45ifeqda 4563 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4711, 46eqtrd 2772 . . . 4 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4847mpteq2dva 5247 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
497, 48eqtr2d 2773 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
5014ffvelcdmda 7083 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐴)
5123, 37ffvelcdmd 7084 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐴)
5250, 51ifclda 4562 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐴)
53 ccatfval 14519 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
54533adant3 1132 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
55 simp3 1138 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
5655feqmptd 6957 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
57 fveq2 6888 . . . 4 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
58 fvif 6904 . . . 4 (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
5957, 58eqtrdi 2788 . . 3 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
6052, 54, 56, 59fmptco 7123 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
61 ffun 6717 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
62613ad2ant3 1135 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → Fun 𝐹)
63 simp1 1136 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆 ∈ Word 𝐴)
64 cofunexg 7931 . . . 4 ((Fun 𝐹𝑆 ∈ Word 𝐴) → (𝐹𝑆) ∈ V)
6562, 63, 64syl2anc 584 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑆) ∈ V)
66 simp2 1137 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇 ∈ Word 𝐴)
67 cofunexg 7931 . . . 4 ((Fun 𝐹𝑇 ∈ Word 𝐴) → (𝐹𝑇) ∈ V)
6862, 66, 67syl2anc 584 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑇) ∈ V)
69 ccatfval 14519 . . 3 (((𝐹𝑆) ∈ V ∧ (𝐹𝑇) ∈ V) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7065, 68, 69syl2anc 584 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7149, 60, 703eqtr4d 2782 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  ifcif 4527  cmpt 5230  ccom 5679  Fun wfun 6534   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  0cc0 11106   + caddc 11109  cmin 11440  cz 12554  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517
This theorem is referenced by:  cats1co  14803  frmdgsum  18739  frmdup1  18741  efginvrel2  19589  frgpuplem  19634  frgpup1  19637  mrsubccat  34497
  Copyright terms: Public domain W3C validator