MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Visualization version   GIF version

Theorem ccatco 14593
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))

Proof of Theorem ccatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 14590 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
213adant2 1131 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
3 lenco 14590 . . . . . . 7 ((𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
433adant1 1130 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
52, 4oveq12d 7325 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇))) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7323 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
76mpteq1d 5176 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
82oveq2d 7323 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
98adantr 482 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
109eleq2d 2822 . . . . . 6 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘(𝐹𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1110ifbid 4488 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))))
12 wrdf 14267 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1413adantr 482 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1514ffnd 6631 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 Fn (0..^(♯‘𝑆)))
16 fvco2 6897 . . . . . . . 8 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
1715, 16sylan 581 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
18 iftrue 4471 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
1918adantl 483 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2017, 19eqtr4d 2779 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
21 wrdf 14267 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴𝑇:(0..^(♯‘𝑇))⟶𝐴)
22213ad2ant2 1134 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2322ad2antrr 724 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2423ffnd 6631 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇 Fn (0..^(♯‘𝑇)))
25 lencl 14281 . . . . . . . . . . . . 13 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2625nn0zd 12470 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ)
27263ad2ant1 1133 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑆) ∈ ℤ)
28 fzospliti 13465 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
2928ancoms 460 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℤ ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3027, 29sylan 581 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3130orcanai 1001 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
32 lencl 14281 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℕ0)
3332nn0zd 12470 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℤ)
34333ad2ant2 1134 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑇) ∈ ℤ)
3534ad2antrr 724 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℤ)
36 fzosubel3 13494 . . . . . . . . 9 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
3731, 35, 36syl2anc 585 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
38 fvco2 6897 . . . . . . . 8 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
3924, 37, 38syl2anc 585 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
402oveq2d 7323 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 − (♯‘(𝐹𝑆))) = (𝑥 − (♯‘𝑆)))
4140fveq2d 6808 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
4241ad2antrr 724 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
43 iffalse 4474 . . . . . . . 8 𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4443adantl 483 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4539, 42, 443eqtr4d 2786 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4620, 45ifeqda 4501 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4711, 46eqtrd 2776 . . . 4 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4847mpteq2dva 5181 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
497, 48eqtr2d 2777 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
5014ffvelcdmda 6993 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐴)
5123, 37ffvelcdmd 6994 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐴)
5250, 51ifclda 4500 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐴)
53 ccatfval 14321 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
54533adant3 1132 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
55 simp3 1138 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
5655feqmptd 6869 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
57 fveq2 6804 . . . 4 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
58 fvif 6820 . . . 4 (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
5957, 58eqtrdi 2792 . . 3 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
6052, 54, 56, 59fmptco 7033 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
61 ffun 6633 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
62613ad2ant3 1135 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → Fun 𝐹)
63 simp1 1136 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆 ∈ Word 𝐴)
64 cofunexg 7823 . . . 4 ((Fun 𝐹𝑆 ∈ Word 𝐴) → (𝐹𝑆) ∈ V)
6562, 63, 64syl2anc 585 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑆) ∈ V)
66 simp2 1137 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇 ∈ Word 𝐴)
67 cofunexg 7823 . . . 4 ((Fun 𝐹𝑇 ∈ Word 𝐴) → (𝐹𝑇) ∈ V)
6862, 66, 67syl2anc 585 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑇) ∈ V)
69 ccatfval 14321 . . 3 (((𝐹𝑆) ∈ V ∧ (𝐹𝑇) ∈ V) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7065, 68, 69syl2anc 585 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7149, 60, 703eqtr4d 2786 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  ifcif 4465  cmpt 5164  ccom 5604  Fun wfun 6452   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  0cc0 10917   + caddc 10920  cmin 11251  cz 12365  ..^cfzo 13428  chash 14090  Word cword 14262   ++ cconcat 14318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429  df-hash 14091  df-word 14263  df-concat 14319
This theorem is referenced by:  cats1co  14614  frmdgsum  18546  frmdup1  18548  efginvrel2  19378  frgpuplem  19423  frgpup1  19426  mrsubccat  33525
  Copyright terms: Public domain W3C validator