MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Visualization version   GIF version

Theorem ccatco 14365
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))

Proof of Theorem ccatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 14362 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
213adant2 1133 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑆)) = (♯‘𝑆))
3 lenco 14362 . . . . . . 7 ((𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
433adant1 1132 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
52, 4oveq12d 7209 . . . . 5 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇))) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7207 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
76mpteq1d 5129 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
82oveq2d 7207 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
98adantr 484 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (0..^(♯‘(𝐹𝑆))) = (0..^(♯‘𝑆)))
109eleq2d 2816 . . . . . 6 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘(𝐹𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1110ifbid 4448 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))))
12 wrdf 14039 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
13123ad2ant1 1135 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1413adantr 484 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1514ffnd 6524 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 Fn (0..^(♯‘𝑆)))
16 fvco2 6786 . . . . . . . 8 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
1715, 16sylan 583 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = (𝐹‘(𝑆𝑥)))
18 iftrue 4431 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
1918adantl 485 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑆𝑥)))
2017, 19eqtr4d 2774 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑆)‘𝑥) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
21 wrdf 14039 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴𝑇:(0..^(♯‘𝑇))⟶𝐴)
22213ad2ant2 1136 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2322ad2antrr 726 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐴)
2423ffnd 6524 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇 Fn (0..^(♯‘𝑇)))
25 lencl 14053 . . . . . . . . . . . . 13 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2625nn0zd 12245 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ)
27263ad2ant1 1135 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑆) ∈ ℤ)
28 fzospliti 13239 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
2928ancoms 462 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℤ ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3027, 29sylan 583 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
3130orcanai 1003 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
32 lencl 14053 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℕ0)
3332nn0zd 12245 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈ ℤ)
34333ad2ant2 1136 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑇) ∈ ℤ)
3534ad2antrr 726 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℤ)
36 fzosubel3 13268 . . . . . . . . 9 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
3731, 35, 36syl2anc 587 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
38 fvco2 6786 . . . . . . . 8 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
3924, 37, 38syl2anc 587 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
402oveq2d 7207 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 − (♯‘(𝐹𝑆))) = (𝑥 − (♯‘𝑆)))
4140fveq2d 6699 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
4241ad2antrr 726 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = ((𝐹𝑇)‘(𝑥 − (♯‘𝑆))))
43 iffalse 4434 . . . . . . . 8 𝑥 ∈ (0..^(♯‘𝑆)) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4443adantl 485 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))) = (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
4539, 42, 443eqtr4d 2781 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4620, 45ifeqda 4461 . . . . 5 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4711, 46eqtrd 2771 . . . 4 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
4847mpteq2dva 5135 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
497, 48eqtr2d 2772 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
5014ffvelrnda 6882 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐴)
5123, 37ffvelrnd 6883 . . . 4 ((((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐴)
5250, 51ifclda 4460 . . 3 (((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐴)
53 ccatfval 14093 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
54533adant3 1134 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
55 simp3 1140 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
5655feqmptd 6758 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
57 fveq2 6695 . . . 4 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
58 fvif 6711 . . . 4 (𝐹‘if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))
5957, 58eqtrdi 2787 . . 3 (𝑦 = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) → (𝐹𝑦) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆))))))
6052, 54, 56, 59fmptco 6922 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝐹‘(𝑆𝑥)), (𝐹‘(𝑇‘(𝑥 − (♯‘𝑆)))))))
61 ffun 6526 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
62613ad2ant3 1137 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → Fun 𝐹)
63 simp1 1138 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑆 ∈ Word 𝐴)
64 cofunexg 7700 . . . 4 ((Fun 𝐹𝑆 ∈ Word 𝐴) → (𝐹𝑆) ∈ V)
6562, 63, 64syl2anc 587 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑆) ∈ V)
66 simp2 1139 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑇 ∈ Word 𝐴)
67 cofunexg 7700 . . . 4 ((Fun 𝐹𝑇 ∈ Word 𝐴) → (𝐹𝑇) ∈ V)
6862, 66, 67syl2anc 587 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑇) ∈ V)
69 ccatfval 14093 . . 3 (((𝐹𝑆) ∈ V ∧ (𝐹𝑇) ∈ V) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7065, 68, 69syl2anc 587 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → ((𝐹𝑆) ++ (𝐹𝑇)) = (𝑥 ∈ (0..^((♯‘(𝐹𝑆)) + (♯‘(𝐹𝑇)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝐹𝑆))), ((𝐹𝑆)‘𝑥), ((𝐹𝑇)‘(𝑥 − (♯‘(𝐹𝑆)))))))
7149, 60, 703eqtr4d 2781 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹𝑆) ++ (𝐹𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  ifcif 4425  cmpt 5120  ccom 5540  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  0cc0 10694   + caddc 10697  cmin 11027  cz 12141  ..^cfzo 13203  chash 13861  Word cword 14034   ++ cconcat 14090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091
This theorem is referenced by:  cats1co  14386  frmdgsum  18243  frmdup1  18245  efginvrel2  19071  frgpuplem  19116  frgpup1  19119  mrsubccat  33147
  Copyright terms: Public domain W3C validator