MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Visualization version   GIF version

Theorem pcopt 25040
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6902 . . . . . . . . 9 (𝑃‘(2 · 𝑥)) = (((0[,]1) × {𝑌})‘(2 · 𝑥))
3 simpr 483 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) = 𝑌)
4 iiuni 24892 . . . . . . . . . . . . . 14 (0[,]1) = II
5 eqid 2726 . . . . . . . . . . . . . 14 𝐽 = 𝐽
64, 5cnf 23241 . . . . . . . . . . . . 13 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 479 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 0elunit 13500 . . . . . . . . . . . 12 0 ∈ (0[,]1)
9 ffvelcdm 7095 . . . . . . . . . . . 12 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝐽)
107, 8, 9sylancl 584 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) ∈ 𝐽)
113, 10eqeltrrd 2827 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑌 𝐽)
12 elii1 24949 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
13 iihalf1 24943 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
1412, 13sylbir 234 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
15 fvconst2g 7219 . . . . . . . . . 10 ((𝑌 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
1611, 14, 15syl2an 594 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
172, 16eqtrid 2778 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = 𝑌)
18 simplr 767 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝐹‘0) = 𝑌)
1917, 18eqtr4d 2769 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = (𝐹‘0))
2019ifeq1d 4552 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2120expr 455 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
22 iffalse 4542 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
23 iffalse 4542 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
2422, 23eqtr4d 2769 . . . . 5 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2521, 24pm2.61d1 180 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2625mpteq2dva 5253 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
27 cntop2 23236 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2827adantr 479 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ Top)
29 toptopon2 22911 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3028, 29sylib 217 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
311pcoptcl 25039 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3230, 11, 31syl2anc 582 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp1d 1139 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
34 simpl 481 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
3533, 34pcoval 25029 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))))
36 iffalse 4542 . . . . . . . . 9 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
3736adantl 480 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
38 elii2 24950 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
39 iihalf2 24946 . . . . . . . . 9 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4137, 40eqeltrd 2826 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4241ex 411 . . . . . 6 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1)))
43 iftrue 4539 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
4443, 8eqeltrdi 2834 . . . . . 6 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4542, 44pm2.61d2 181 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4645adantl 480 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
47 eqid 2726 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
4847a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
497feqmptd 6971 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
50 fveq2 6901 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
51 fvif 6917 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))
5250, 51eqtrdi 2782 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
5346, 48, 49, 52fmptco 7143 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
5426, 35, 533eqtr4d 2776 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))))
55 iitopon 24890 . . . . 5 II ∈ (TopOn‘(0[,]1))
5655a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5756cnmptid 23656 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
588a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ (0[,]1))
5956, 56, 58cnmptc 23657 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
60 eqid 2726 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
61 eqid 2726 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
62 eqid 2726 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
63 dfii2 24893 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
64 0re 11266 . . . . . 6 0 ∈ ℝ
6564a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ ℝ)
66 1re 11264 . . . . . 6 1 ∈ ℝ
6766a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 1 ∈ ℝ)
68 halfre 12478 . . . . . . 7 (1 / 2) ∈ ℝ
69 halfge0 12481 . . . . . . 7 0 ≤ (1 / 2)
70 halflt1 12482 . . . . . . . 8 (1 / 2) < 1
7168, 66, 70ltleii 11387 . . . . . . 7 (1 / 2) ≤ 1
72 elicc01 13497 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
7368, 69, 71, 72mpbir3an 1338 . . . . . 6 (1 / 2) ∈ (0[,]1)
7473a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (1 / 2) ∈ (0[,]1))
75 simprl 769 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7675oveq2d 7440 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
77 2cn 12339 . . . . . . . . 9 2 ∈ ℂ
78 2ne0 12368 . . . . . . . . 9 2 ≠ 0
7977, 78recidi 11996 . . . . . . . 8 (2 · (1 / 2)) = 1
8076, 79eqtrdi 2782 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
8180oveq1d 7439 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
82 1m1e0 12336 . . . . . 6 (1 − 1) = 0
8381, 82eqtr2di 2783 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 0 = ((2 · 𝑦) − 1))
84 retopon 24771 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
85 iccssre 13460 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
8664, 68, 85mp2an 690 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
87 resttopon 23156 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8884, 86, 87mp2an 690 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8988a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
9089, 56, 56, 58cnmpt2c 23665 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 0) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
91 iccssre 13460 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
9268, 66, 91mp2an 690 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
93 resttopon 23156 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9484, 92, 93mp2an 690 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9594a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9695, 56cnmpt1st 23663 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
9762iihalf2cn 24947 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
9897a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
99 oveq2 7432 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
10099oveq1d 7439 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
10195, 56, 96, 95, 98, 100cnmpt21 23666 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
10260, 61, 62, 63, 65, 67, 74, 56, 83, 90, 101cnmpopc 24940 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1))) ∈ ((II ×t II) Cn II))
103 breq1 5156 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
104 oveq2 7432 . . . . . . 7 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
105104oveq1d 7439 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
106103, 105ifbieq2d 4559 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
107106adantr 479 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
10856, 57, 59, 56, 56, 102, 107cnmpt12 23662 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) ∈ (II Cn II))
109 id 22 . . . . . . 7 (𝑥 = 0 → 𝑥 = 0)
110109, 69eqbrtrdi 5192 . . . . . 6 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
111110, 43syl 17 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
112 c0ex 11258 . . . . 5 0 ∈ V
113111, 47, 112fvmpt 7009 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
1148, 113mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
115 1elunit 13501 . . . 4 1 ∈ (0[,]1)
11668, 66ltnlei 11385 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11770, 116mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
118 breq1 5156 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
119117, 118mtbiri 326 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
120119, 36syl 17 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
121 oveq2 7432 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
122 2t1e2 12427 . . . . . . . . 9 (2 · 1) = 2
123121, 122eqtrdi 2782 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
124123oveq1d 7439 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
125 2m1e1 12390 . . . . . . 7 (2 − 1) = 1
126124, 125eqtrdi 2782 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
127120, 126eqtrd 2766 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 1)
128 1ex 11260 . . . . 5 1 ∈ V
129127, 47, 128fvmpt 7009 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
130115, 129mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
13134, 108, 114, 130reparpht 25016 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))( ≃ph𝐽)𝐹)
13254, 131eqbrtrd 5175 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wss 3947  ifcif 4533  {csn 4633   cuni 4913   class class class wbr 5153  cmpt 5236   × cxp 5680  ran crn 5683  ccom 5686  wf 6550  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  2c2 12319  (,)cioo 13378  [,]cicc 13381  t crest 17435  topGenctg 17452  Topctop 22886  TopOnctopon 22903   Cn ccn 23219  IIcii 24886  phcphtpc 24986  *𝑝cpco 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-cn 23222  df-cnp 23223  df-tx 23557  df-hmeo 23750  df-xms 24317  df-ms 24318  df-tms 24319  df-ii 24888  df-htpy 24987  df-phtpy 24988  df-phtpc 25009  df-pco 25023
This theorem is referenced by:  pcophtb  25047  pi1grplem  25067  pi1xfr  25073  pi1xfrcnvlem  25074
  Copyright terms: Public domain W3C validator