MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Visualization version   GIF version

Theorem pcopt 24257
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6812 . . . . . . . . 9 (𝑃‘(2 · 𝑥)) = (((0[,]1) × {𝑌})‘(2 · 𝑥))
3 simpr 485 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) = 𝑌)
4 iiuni 24116 . . . . . . . . . . . . . 14 (0[,]1) = II
5 eqid 2737 . . . . . . . . . . . . . 14 𝐽 = 𝐽
64, 5cnf 22469 . . . . . . . . . . . . 13 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 481 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 0elunit 13274 . . . . . . . . . . . 12 0 ∈ (0[,]1)
9 ffvelcdm 6998 . . . . . . . . . . . 12 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝐽)
107, 8, 9sylancl 586 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) ∈ 𝐽)
113, 10eqeltrrd 2839 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑌 𝐽)
12 elii1 24170 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
13 iihalf1 24166 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
1412, 13sylbir 234 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
15 fvconst2g 7116 . . . . . . . . . 10 ((𝑌 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
1611, 14, 15syl2an 596 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
172, 16eqtrid 2789 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = 𝑌)
18 simplr 766 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝐹‘0) = 𝑌)
1917, 18eqtr4d 2780 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = (𝐹‘0))
2019ifeq1d 4490 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2120expr 457 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
22 iffalse 4480 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
23 iffalse 4480 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
2422, 23eqtr4d 2780 . . . . 5 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2521, 24pm2.61d1 180 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2625mpteq2dva 5187 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
27 cntop2 22464 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2827adantr 481 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ Top)
29 toptopon2 22139 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3028, 29sylib 217 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
311pcoptcl 24256 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3230, 11, 31syl2anc 584 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp1d 1141 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
34 simpl 483 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
3533, 34pcoval 24246 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))))
36 iffalse 4480 . . . . . . . . 9 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
3736adantl 482 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
38 elii2 24171 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
39 iihalf2 24168 . . . . . . . . 9 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4137, 40eqeltrd 2838 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4241ex 413 . . . . . 6 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1)))
43 iftrue 4477 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
4443, 8eqeltrdi 2846 . . . . . 6 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4542, 44pm2.61d2 181 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4645adantl 482 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
47 eqid 2737 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
4847a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
497feqmptd 6876 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
50 fveq2 6811 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
51 fvif 6827 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))
5250, 51eqtrdi 2793 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
5346, 48, 49, 52fmptco 7040 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
5426, 35, 533eqtr4d 2787 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))))
55 iitopon 24114 . . . . 5 II ∈ (TopOn‘(0[,]1))
5655a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5756cnmptid 22884 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
588a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ (0[,]1))
5956, 56, 58cnmptc 22885 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
60 eqid 2737 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
61 eqid 2737 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
62 eqid 2737 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
63 dfii2 24117 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
64 0re 11050 . . . . . 6 0 ∈ ℝ
6564a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ ℝ)
66 1re 11048 . . . . . 6 1 ∈ ℝ
6766a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 1 ∈ ℝ)
68 halfre 12260 . . . . . . 7 (1 / 2) ∈ ℝ
69 halfge0 12263 . . . . . . 7 0 ≤ (1 / 2)
70 halflt1 12264 . . . . . . . 8 (1 / 2) < 1
7168, 66, 70ltleii 11171 . . . . . . 7 (1 / 2) ≤ 1
72 elicc01 13271 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
7368, 69, 71, 72mpbir3an 1340 . . . . . 6 (1 / 2) ∈ (0[,]1)
7473a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (1 / 2) ∈ (0[,]1))
75 simprl 768 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7675oveq2d 7331 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
77 2cn 12121 . . . . . . . . 9 2 ∈ ℂ
78 2ne0 12150 . . . . . . . . 9 2 ≠ 0
7977, 78recidi 11779 . . . . . . . 8 (2 · (1 / 2)) = 1
8076, 79eqtrdi 2793 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
8180oveq1d 7330 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
82 1m1e0 12118 . . . . . 6 (1 − 1) = 0
8381, 82eqtr2di 2794 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 0 = ((2 · 𝑦) − 1))
84 retopon 23999 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
85 iccssre 13234 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
8664, 68, 85mp2an 689 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
87 resttopon 22384 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8884, 86, 87mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8988a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
9089, 56, 56, 58cnmpt2c 22893 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 0) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
91 iccssre 13234 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
9268, 66, 91mp2an 689 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
93 resttopon 22384 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9484, 92, 93mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9594a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9695, 56cnmpt1st 22891 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
9762iihalf2cn 24169 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
9897a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
99 oveq2 7323 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
10099oveq1d 7330 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
10195, 56, 96, 95, 98, 100cnmpt21 22894 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
10260, 61, 62, 63, 65, 67, 74, 56, 83, 90, 101cnmpopc 24163 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1))) ∈ ((II ×t II) Cn II))
103 breq1 5090 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
104 oveq2 7323 . . . . . . 7 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
105104oveq1d 7330 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
106103, 105ifbieq2d 4497 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
107106adantr 481 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
10856, 57, 59, 56, 56, 102, 107cnmpt12 22890 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) ∈ (II Cn II))
109 id 22 . . . . . . 7 (𝑥 = 0 → 𝑥 = 0)
110109, 69eqbrtrdi 5126 . . . . . 6 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
111110, 43syl 17 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
112 c0ex 11042 . . . . 5 0 ∈ V
113111, 47, 112fvmpt 6914 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
1148, 113mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
115 1elunit 13275 . . . 4 1 ∈ (0[,]1)
11668, 66ltnlei 11169 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11770, 116mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
118 breq1 5090 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
119117, 118mtbiri 326 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
120119, 36syl 17 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
121 oveq2 7323 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
122 2t1e2 12209 . . . . . . . . 9 (2 · 1) = 2
123121, 122eqtrdi 2793 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
124123oveq1d 7330 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
125 2m1e1 12172 . . . . . . 7 (2 − 1) = 1
126124, 125eqtrdi 2793 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
127120, 126eqtrd 2777 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 1)
128 1ex 11044 . . . . 5 1 ∈ V
129127, 47, 128fvmpt 6914 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
130115, 129mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
13134, 108, 114, 130reparpht 24233 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))( ≃ph𝐽)𝐹)
13254, 131eqbrtrd 5109 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wss 3897  ifcif 4471  {csn 4571   cuni 4850   class class class wbr 5087  cmpt 5170   × cxp 5605  ran crn 5608  ccom 5611  wf 6461  cfv 6465  (class class class)co 7315  cr 10943  0cc0 10944  1c1 10945   · cmul 10949   < clt 11082  cle 11083  cmin 11278   / cdiv 11705  2c2 12101  (,)cioo 13152  [,]cicc 13155  t crest 17201  topGenctg 17218  Topctop 22114  TopOnctopon 22131   Cn ccn 22447  IIcii 24110  phcphtpc 24204  *𝑝cpco 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022  ax-addf 11023  ax-mulf 11024
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-of 7573  df-om 7758  df-1st 7876  df-2nd 7877  df-supp 8025  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-2o 8345  df-er 8546  df-map 8665  df-ixp 8734  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-fsupp 9199  df-fi 9240  df-sup 9271  df-inf 9272  df-oi 9339  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-3 12110  df-4 12111  df-5 12112  df-6 12113  df-7 12114  df-8 12115  df-9 12116  df-n0 12307  df-z 12393  df-dec 12511  df-uz 12656  df-q 12762  df-rp 12804  df-xneg 12921  df-xadd 12922  df-xmul 12923  df-ioo 13156  df-icc 13159  df-fz 13313  df-fzo 13456  df-seq 13795  df-exp 13856  df-hash 14118  df-cj 14882  df-re 14883  df-im 14884  df-sqrt 15018  df-abs 15019  df-struct 16918  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-mulr 17046  df-starv 17047  df-sca 17048  df-vsca 17049  df-ip 17050  df-tset 17051  df-ple 17052  df-ds 17054  df-unif 17055  df-hom 17056  df-cco 17057  df-rest 17203  df-topn 17204  df-0g 17222  df-gsum 17223  df-topgen 17224  df-pt 17225  df-prds 17228  df-xrs 17283  df-qtop 17288  df-imas 17289  df-xps 17291  df-mre 17365  df-mrc 17366  df-acs 17368  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-submnd 18501  df-mulg 18770  df-cntz 18992  df-cmn 19456  df-psmet 20661  df-xmet 20662  df-met 20663  df-bl 20664  df-mopn 20665  df-cnfld 20670  df-top 22115  df-topon 22132  df-topsp 22154  df-bases 22168  df-cld 22242  df-cn 22450  df-cnp 22451  df-tx 22785  df-hmeo 22978  df-xms 23545  df-ms 23546  df-tms 23547  df-ii 24112  df-htpy 24205  df-phtpy 24206  df-phtpc 24227  df-pco 24240
This theorem is referenced by:  pcophtb  24264  pi1grplem  24284  pi1xfr  24290  pi1xfrcnvlem  24291
  Copyright terms: Public domain W3C validator