Step | Hyp | Ref
| Expression |
1 | | pcopt.1 |
. . . . . . . . . 10
β’ π = ((0[,]1) Γ {π}) |
2 | 1 | fveq1i 6889 |
. . . . . . . . 9
β’ (πβ(2 Β· π₯)) = (((0[,]1) Γ {π})β(2 Β· π₯)) |
3 | | simpr 485 |
. . . . . . . . . . 11
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (πΉβ0) = π) |
4 | | iiuni 24388 |
. . . . . . . . . . . . . 14
β’ (0[,]1) =
βͺ II |
5 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ βͺ π½ =
βͺ π½ |
6 | 4, 5 | cnf 22741 |
. . . . . . . . . . . . 13
β’ (πΉ β (II Cn π½) β πΉ:(0[,]1)βΆβͺ
π½) |
7 | 6 | adantr 481 |
. . . . . . . . . . . 12
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β πΉ:(0[,]1)βΆβͺ
π½) |
8 | | 0elunit 13442 |
. . . . . . . . . . . 12
β’ 0 β
(0[,]1) |
9 | | ffvelcdm 7080 |
. . . . . . . . . . . 12
β’ ((πΉ:(0[,]1)βΆβͺ π½
β§ 0 β (0[,]1)) β (πΉβ0) β βͺ π½) |
10 | 7, 8, 9 | sylancl 586 |
. . . . . . . . . . 11
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (πΉβ0) β βͺ π½) |
11 | 3, 10 | eqeltrrd 2834 |
. . . . . . . . . 10
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β π β βͺ π½) |
12 | | elii1 24442 |
. . . . . . . . . . 11
β’ (π₯ β (0[,](1 / 2)) β
(π₯ β (0[,]1) β§
π₯ β€ (1 /
2))) |
13 | | iihalf1 24438 |
. . . . . . . . . . 11
β’ (π₯ β (0[,](1 / 2)) β (2
Β· π₯) β
(0[,]1)) |
14 | 12, 13 | sylbir 234 |
. . . . . . . . . 10
β’ ((π₯ β (0[,]1) β§ π₯ β€ (1 / 2)) β (2
Β· π₯) β
(0[,]1)) |
15 | | fvconst2g 7199 |
. . . . . . . . . 10
β’ ((π β βͺ π½
β§ (2 Β· π₯) β
(0[,]1)) β (((0[,]1) Γ {π})β(2 Β· π₯)) = π) |
16 | 11, 14, 15 | syl2an 596 |
. . . . . . . . 9
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π₯ β (0[,]1) β§ π₯ β€ (1 / 2))) β (((0[,]1) Γ
{π})β(2 Β·
π₯)) = π) |
17 | 2, 16 | eqtrid 2784 |
. . . . . . . 8
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π₯ β (0[,]1) β§ π₯ β€ (1 / 2))) β (πβ(2 Β· π₯)) = π) |
18 | | simplr 767 |
. . . . . . . 8
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π₯ β (0[,]1) β§ π₯ β€ (1 / 2))) β (πΉβ0) = π) |
19 | 17, 18 | eqtr4d 2775 |
. . . . . . 7
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π₯ β (0[,]1) β§ π₯ β€ (1 / 2))) β (πβ(2 Β· π₯)) = (πΉβ0)) |
20 | 19 | ifeq1d 4546 |
. . . . . 6
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π₯ β (0[,]1) β§ π₯ β€ (1 / 2))) β if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1)))) |
21 | 20 | expr 457 |
. . . . 5
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ π₯ β (0[,]1)) β (π₯ β€ (1 / 2) β if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1))))) |
22 | | iffalse 4536 |
. . . . . 6
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))) = (πΉβ((2 Β· π₯) β 1))) |
23 | | iffalse 4536 |
. . . . . 6
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1))) = (πΉβ((2 Β· π₯) β 1))) |
24 | 22, 23 | eqtr4d 2775 |
. . . . 5
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1)))) |
25 | 21, 24 | pm2.61d1 180 |
. . . 4
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ π₯ β (0[,]1)) β if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1)))) |
26 | 25 | mpteq2dva 5247 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1)))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1))))) |
27 | | cntop2 22736 |
. . . . . . . 8
β’ (πΉ β (II Cn π½) β π½ β Top) |
28 | 27 | adantr 481 |
. . . . . . 7
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β π½ β Top) |
29 | | toptopon2 22411 |
. . . . . . 7
β’ (π½ β Top β π½ β (TopOnββͺ π½)) |
30 | 28, 29 | sylib 217 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β π½ β (TopOnββͺ π½)) |
31 | 1 | pcoptcl 24528 |
. . . . . 6
β’ ((π½ β (TopOnββͺ π½)
β§ π β βͺ π½)
β (π β (II Cn
π½) β§ (πβ0) = π β§ (πβ1) = π)) |
32 | 30, 11, 31 | syl2anc 584 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π β (II Cn π½) β§ (πβ0) = π β§ (πβ1) = π)) |
33 | 32 | simp1d 1142 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β π β (II Cn π½)) |
34 | | simpl 483 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β πΉ β (II Cn π½)) |
35 | 33, 34 | pcoval 24518 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π(*πβπ½)πΉ) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πΉβ((2 Β· π₯) β 1))))) |
36 | | iffalse 4536 |
. . . . . . . . 9
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), 0, ((2
Β· π₯) β 1)) =
((2 Β· π₯) β
1)) |
37 | 36 | adantl 482 |
. . . . . . . 8
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β
if(π₯ β€ (1 / 2), 0, ((2
Β· π₯) β 1)) =
((2 Β· π₯) β
1)) |
38 | | elii2 24443 |
. . . . . . . . 9
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β
π₯ β ((1 /
2)[,]1)) |
39 | | iihalf2 24440 |
. . . . . . . . 9
β’ (π₯ β ((1 / 2)[,]1) β ((2
Β· π₯) β 1)
β (0[,]1)) |
40 | 38, 39 | syl 17 |
. . . . . . . 8
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β ((2
Β· π₯) β 1)
β (0[,]1)) |
41 | 37, 40 | eqeltrd 2833 |
. . . . . . 7
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β
if(π₯ β€ (1 / 2), 0, ((2
Β· π₯) β 1))
β (0[,]1)) |
42 | 41 | ex 413 |
. . . . . 6
β’ (π₯ β (0[,]1) β (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), 0, ((2
Β· π₯) β 1))
β (0[,]1))) |
43 | | iftrue 4533 |
. . . . . . 7
β’ (π₯ β€ (1 / 2) β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) =
0) |
44 | 43, 8 | eqeltrdi 2841 |
. . . . . 6
β’ (π₯ β€ (1 / 2) β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) β
(0[,]1)) |
45 | 42, 44 | pm2.61d2 181 |
. . . . 5
β’ (π₯ β (0[,]1) β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) β
(0[,]1)) |
46 | 45 | adantl 482 |
. . . 4
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ π₯ β (0[,]1)) β if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)) β
(0[,]1)) |
47 | | eqid 2732 |
. . . . 5
β’ (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β
1))) |
48 | 47 | a1i 11 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β
1)))) |
49 | 7 | feqmptd 6957 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β πΉ = (π¦ β (0[,]1) β¦ (πΉβπ¦))) |
50 | | fveq2 6888 |
. . . . 5
β’ (π¦ = if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)) β (πΉβπ¦) = (πΉβif(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)))) |
51 | | fvif 6904 |
. . . . 5
β’ (πΉβif(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1))) |
52 | 50, 51 | eqtrdi 2788 |
. . . 4
β’ (π¦ = if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)) β (πΉβπ¦) = if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1)))) |
53 | 46, 48, 49, 52 | fmptco 7123 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ0), (πΉβ((2 Β· π₯) β 1))))) |
54 | 26, 35, 53 | 3eqtr4d 2782 |
. 2
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π(*πβπ½)πΉ) = (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β
1))))) |
55 | | iitopon 24386 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
56 | 55 | a1i 11 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β II β
(TopOnβ(0[,]1))) |
57 | 56 | cnmptid 23156 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β (0[,]1) β¦ π₯) β (II Cn II)) |
58 | 8 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β 0 β (0[,]1)) |
59 | 56, 56, 58 | cnmptc 23157 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β (0[,]1) β¦ 0) β (II Cn
II)) |
60 | | eqid 2732 |
. . . . 5
β’
(topGenβran (,)) = (topGenβran (,)) |
61 | | eqid 2732 |
. . . . 5
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) =
((topGenβran (,)) βΎt (0[,](1 / 2))) |
62 | | eqid 2732 |
. . . . 5
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) =
((topGenβran (,)) βΎt ((1 / 2)[,]1)) |
63 | | dfii2 24389 |
. . . . 5
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
64 | | 0re 11212 |
. . . . . 6
β’ 0 β
β |
65 | 64 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β 0 β β) |
66 | | 1re 11210 |
. . . . . 6
β’ 1 β
β |
67 | 66 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β 1 β β) |
68 | | halfre 12422 |
. . . . . . 7
β’ (1 / 2)
β β |
69 | | halfge0 12425 |
. . . . . . 7
β’ 0 β€ (1
/ 2) |
70 | | halflt1 12426 |
. . . . . . . 8
β’ (1 / 2)
< 1 |
71 | 68, 66, 70 | ltleii 11333 |
. . . . . . 7
β’ (1 / 2)
β€ 1 |
72 | | elicc01 13439 |
. . . . . . 7
β’ ((1 / 2)
β (0[,]1) β ((1 / 2) β β β§ 0 β€ (1 / 2) β§ (1 /
2) β€ 1)) |
73 | 68, 69, 71, 72 | mpbir3an 1341 |
. . . . . 6
β’ (1 / 2)
β (0[,]1) |
74 | 73 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (1 / 2) β
(0[,]1)) |
75 | | simprl 769 |
. . . . . . . . 9
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β π¦ = (1 / 2)) |
76 | 75 | oveq2d 7421 |
. . . . . . . 8
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = (2 Β· (1 /
2))) |
77 | | 2cn 12283 |
. . . . . . . . 9
β’ 2 β
β |
78 | | 2ne0 12312 |
. . . . . . . . 9
β’ 2 β
0 |
79 | 77, 78 | recidi 11941 |
. . . . . . . 8
β’ (2
Β· (1 / 2)) = 1 |
80 | 76, 79 | eqtrdi 2788 |
. . . . . . 7
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = 1) |
81 | 80 | oveq1d 7420 |
. . . . . 6
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β ((2 Β· π¦) β 1) = (1 β
1)) |
82 | | 1m1e0 12280 |
. . . . . 6
β’ (1
β 1) = 0 |
83 | 81, 82 | eqtr2di 2789 |
. . . . 5
β’ (((πΉ β (II Cn π½) β§ (πΉβ0) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β 0 = ((2 Β·
π¦) β
1)) |
84 | | retopon 24271 |
. . . . . . . 8
β’
(topGenβran (,)) β (TopOnββ) |
85 | | iccssre 13402 |
. . . . . . . . 9
β’ ((0
β β β§ (1 / 2) β β) β (0[,](1 / 2)) β
β) |
86 | 64, 68, 85 | mp2an 690 |
. . . . . . . 8
β’ (0[,](1 /
2)) β β |
87 | | resttopon 22656 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ (0[,](1 /
2)) β β) β ((topGenβran (,)) βΎt (0[,](1
/ 2))) β (TopOnβ(0[,](1 / 2)))) |
88 | 84, 86, 87 | mp2an 690 |
. . . . . . 7
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) β
(TopOnβ(0[,](1 / 2))) |
89 | 88 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β ((topGenβran (,))
βΎt (0[,](1 / 2))) β (TopOnβ(0[,](1 /
2)))) |
90 | 89, 56, 56, 58 | cnmpt2c 23165 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ 0) β
((((topGenβran (,)) βΎt (0[,](1 / 2)))
Γt II) Cn II)) |
91 | | iccssre 13402 |
. . . . . . . . 9
β’ (((1 / 2)
β β β§ 1 β β) β ((1 / 2)[,]1) β
β) |
92 | 68, 66, 91 | mp2an 690 |
. . . . . . . 8
β’ ((1 /
2)[,]1) β β |
93 | | resttopon 22656 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ ((1 /
2)[,]1) β β) β ((topGenβran (,)) βΎt ((1
/ 2)[,]1)) β (TopOnβ((1 / 2)[,]1))) |
94 | 84, 92, 93 | mp2an 690 |
. . . . . . 7
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) β
(TopOnβ((1 / 2)[,]1)) |
95 | 94 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β ((topGenβran (,))
βΎt ((1 / 2)[,]1)) β (TopOnβ((1 /
2)[,]1))) |
96 | 95, 56 | cnmpt1st 23163 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ π¦) β ((((topGenβran (,))
βΎt ((1 / 2)[,]1)) Γt II) Cn
((topGenβran (,)) βΎt ((1 / 2)[,]1)))) |
97 | 62 | iihalf2cn 24441 |
. . . . . . 7
β’ (π₯ β ((1 / 2)[,]1) β¦
((2 Β· π₯) β 1))
β (((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II) |
98 | 97 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β ((1 / 2)[,]1) β¦ ((2 Β·
π₯) β 1)) β
(((topGenβran (,)) βΎt ((1 / 2)[,]1)) Cn
II)) |
99 | | oveq2 7413 |
. . . . . . 7
β’ (π₯ = π¦ β (2 Β· π₯) = (2 Β· π¦)) |
100 | 99 | oveq1d 7420 |
. . . . . 6
β’ (π₯ = π¦ β ((2 Β· π₯) β 1) = ((2 Β· π¦) β 1)) |
101 | 95, 56, 96, 95, 98, 100 | cnmpt21 23166 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ ((2 Β· π¦) β 1)) β
((((topGenβran (,)) βΎt ((1 / 2)[,]1))
Γt II) Cn II)) |
102 | 60, 61, 62, 63, 65, 67, 74, 56, 83, 90, 101 | cnmpopc 24435 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π¦ β (0[,]1), π§ β (0[,]1) β¦ if(π¦ β€ (1 / 2), 0, ((2 Β· π¦) β 1))) β ((II
Γt II) Cn II)) |
103 | | breq1 5150 |
. . . . . 6
β’ (π¦ = π₯ β (π¦ β€ (1 / 2) β π₯ β€ (1 / 2))) |
104 | | oveq2 7413 |
. . . . . . 7
β’ (π¦ = π₯ β (2 Β· π¦) = (2 Β· π₯)) |
105 | 104 | oveq1d 7420 |
. . . . . 6
β’ (π¦ = π₯ β ((2 Β· π¦) β 1) = ((2 Β· π₯) β 1)) |
106 | 103, 105 | ifbieq2d 4553 |
. . . . 5
β’ (π¦ = π₯ β if(π¦ β€ (1 / 2), 0, ((2 Β· π¦) β 1)) = if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β
1))) |
107 | 106 | adantr 481 |
. . . 4
β’ ((π¦ = π₯ β§ π§ = 0) β if(π¦ β€ (1 / 2), 0, ((2 Β· π¦) β 1)) = if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β
1))) |
108 | 56, 57, 59, 56, 56, 102, 107 | cnmpt12 23162 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1))) β (II Cn
II)) |
109 | | id 22 |
. . . . . . 7
β’ (π₯ = 0 β π₯ = 0) |
110 | 109, 69 | eqbrtrdi 5186 |
. . . . . 6
β’ (π₯ = 0 β π₯ β€ (1 / 2)) |
111 | 110, 43 | syl 17 |
. . . . 5
β’ (π₯ = 0 β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) =
0) |
112 | | c0ex 11204 |
. . . . 5
β’ 0 β
V |
113 | 111, 47, 112 | fvmpt 6995 |
. . . 4
β’ (0 β
(0[,]1) β ((π₯ β
(0[,]1) β¦ if(π₯ β€
(1 / 2), 0, ((2 Β· π₯)
β 1)))β0) = 0) |
114 | 8, 113 | mp1i 13 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β ((π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)))β0) =
0) |
115 | | 1elunit 13443 |
. . . 4
β’ 1 β
(0[,]1) |
116 | 68, 66 | ltnlei 11331 |
. . . . . . . . 9
β’ ((1 / 2)
< 1 β Β¬ 1 β€ (1 / 2)) |
117 | 70, 116 | mpbi 229 |
. . . . . . . 8
β’ Β¬ 1
β€ (1 / 2) |
118 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = 1 β (π₯ β€ (1 / 2) β 1 β€ (1 /
2))) |
119 | 117, 118 | mtbiri 326 |
. . . . . . 7
β’ (π₯ = 1 β Β¬ π₯ β€ (1 / 2)) |
120 | 119, 36 | syl 17 |
. . . . . 6
β’ (π₯ = 1 β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) = ((2
Β· π₯) β
1)) |
121 | | oveq2 7413 |
. . . . . . . . 9
β’ (π₯ = 1 β (2 Β· π₯) = (2 Β·
1)) |
122 | | 2t1e2 12371 |
. . . . . . . . 9
β’ (2
Β· 1) = 2 |
123 | 121, 122 | eqtrdi 2788 |
. . . . . . . 8
β’ (π₯ = 1 β (2 Β· π₯) = 2) |
124 | 123 | oveq1d 7420 |
. . . . . . 7
β’ (π₯ = 1 β ((2 Β· π₯) β 1) = (2 β
1)) |
125 | | 2m1e1 12334 |
. . . . . . 7
β’ (2
β 1) = 1 |
126 | 124, 125 | eqtrdi 2788 |
. . . . . 6
β’ (π₯ = 1 β ((2 Β· π₯) β 1) =
1) |
127 | 120, 126 | eqtrd 2772 |
. . . . 5
β’ (π₯ = 1 β if(π₯ β€ (1 / 2), 0, ((2 Β·
π₯) β 1)) =
1) |
128 | | 1ex 11206 |
. . . . 5
β’ 1 β
V |
129 | 127, 47, 128 | fvmpt 6995 |
. . . 4
β’ (1 β
(0[,]1) β ((π₯ β
(0[,]1) β¦ if(π₯ β€
(1 / 2), 0, ((2 Β· π₯)
β 1)))β1) = 1) |
130 | 115, 129 | mp1i 13 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β ((π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1)))β1) =
1) |
131 | 34, 108, 114, 130 | reparpht 24505 |
. 2
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), 0, ((2 Β· π₯) β 1))))(
βphβπ½)πΉ) |
132 | 54, 131 | eqbrtrd 5169 |
1
β’ ((πΉ β (II Cn π½) β§ (πΉβ0) = π) β (π(*πβπ½)πΉ)( βphβπ½)πΉ) |