MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Visualization version   GIF version

Theorem pcopt 24971
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6876 . . . . . . . . 9 (𝑃‘(2 · 𝑥)) = (((0[,]1) × {𝑌})‘(2 · 𝑥))
3 simpr 484 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) = 𝑌)
4 iiuni 24823 . . . . . . . . . . . . . 14 (0[,]1) = II
5 eqid 2735 . . . . . . . . . . . . . 14 𝐽 = 𝐽
64, 5cnf 23182 . . . . . . . . . . . . 13 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 0elunit 13484 . . . . . . . . . . . 12 0 ∈ (0[,]1)
9 ffvelcdm 7070 . . . . . . . . . . . 12 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝐽)
107, 8, 9sylancl 586 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹‘0) ∈ 𝐽)
113, 10eqeltrrd 2835 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑌 𝐽)
12 elii1 24880 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
13 iihalf1 24874 . . . . . . . . . . 11 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
1412, 13sylbir 235 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
15 fvconst2g 7193 . . . . . . . . . 10 ((𝑌 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
1611, 14, 15syl2an 596 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘(2 · 𝑥)) = 𝑌)
172, 16eqtrid 2782 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = 𝑌)
18 simplr 768 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝐹‘0) = 𝑌)
1917, 18eqtr4d 2773 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → (𝑃‘(2 · 𝑥)) = (𝐹‘0))
2019ifeq1d 4520 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2120expr 456 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
22 iffalse 4509 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
23 iffalse 4509 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))) = (𝐹‘((2 · 𝑥) − 1)))
2422, 23eqtr4d 2773 . . . . 5 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2521, 24pm2.61d1 180 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
2625mpteq2dva 5214 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
27 cntop2 23177 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2827adantr 480 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ Top)
29 toptopon2 22854 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3028, 29sylib 218 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
311pcoptcl 24970 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3230, 11, 31syl2anc 584 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp1d 1142 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
34 simpl 482 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
3533, 34pcoval 24960 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑃‘(2 · 𝑥)), (𝐹‘((2 · 𝑥) − 1)))))
36 iffalse 4509 . . . . . . . . 9 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
3736adantl 481 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
38 elii2 24881 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
39 iihalf2 24877 . . . . . . . . 9 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4038, 39syl 17 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
4137, 40eqeltrd 2834 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4241ex 412 . . . . . 6 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1)))
43 iftrue 4506 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
4443, 8eqeltrdi 2842 . . . . . 6 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4542, 44pm2.61d2 181 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
4645adantl 481 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) ∈ (0[,]1))
47 eqid 2735 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
4847a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
497feqmptd 6946 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
50 fveq2 6875 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))
51 fvif 6891 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))
5250, 51eqtrdi 2786 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1))))
5346, 48, 49, 52fmptco 7118 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘0), (𝐹‘((2 · 𝑥) − 1)))))
5426, 35, 533eqtr4d 2780 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))))
55 iitopon 24821 . . . . 5 II ∈ (TopOn‘(0[,]1))
5655a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5756cnmptid 23597 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
588a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ (0[,]1))
5956, 56, 58cnmptc 23598 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
60 eqid 2735 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
61 eqid 2735 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
62 eqid 2735 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
63 dfii2 24824 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
64 0re 11235 . . . . . 6 0 ∈ ℝ
6564a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 0 ∈ ℝ)
66 1re 11233 . . . . . 6 1 ∈ ℝ
6766a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → 1 ∈ ℝ)
68 halfre 12452 . . . . . . 7 (1 / 2) ∈ ℝ
69 halfge0 12455 . . . . . . 7 0 ≤ (1 / 2)
70 halflt1 12456 . . . . . . . 8 (1 / 2) < 1
7168, 66, 70ltleii 11356 . . . . . . 7 (1 / 2) ≤ 1
72 elicc01 13481 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
7368, 69, 71, 72mpbir3an 1342 . . . . . 6 (1 / 2) ∈ (0[,]1)
7473a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (1 / 2) ∈ (0[,]1))
75 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7675oveq2d 7419 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
77 2cn 12313 . . . . . . . . 9 2 ∈ ℂ
78 2ne0 12342 . . . . . . . . 9 2 ≠ 0
7977, 78recidi 11970 . . . . . . . 8 (2 · (1 / 2)) = 1
8076, 79eqtrdi 2786 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
8180oveq1d 7418 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((2 · 𝑦) − 1) = (1 − 1))
82 1m1e0 12310 . . . . . 6 (1 − 1) = 0
8381, 82eqtr2di 2787 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 0 = ((2 · 𝑦) − 1))
84 retopon 24700 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
85 iccssre 13444 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
8664, 68, 85mp2an 692 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
87 resttopon 23097 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8884, 86, 87mp2an 692 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8988a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
9089, 56, 56, 58cnmpt2c 23606 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 0) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
91 iccssre 13444 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
9268, 66, 91mp2an 692 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
93 resttopon 23097 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9484, 92, 93mp2an 692 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9594a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9695, 56cnmpt1st 23604 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
9762iihalf2cn 24878 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
9897a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
99 oveq2 7411 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
10099oveq1d 7418 . . . . . 6 (𝑥 = 𝑦 → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1))
10195, 56, 96, 95, 98, 100cnmpt21 23607 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
10260, 61, 62, 63, 65, 67, 74, 56, 83, 90, 101cnmpopc 24871 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1))) ∈ ((II ×t II) Cn II))
103 breq1 5122 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
104 oveq2 7411 . . . . . . 7 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
105104oveq1d 7418 . . . . . 6 (𝑦 = 𝑥 → ((2 · 𝑦) − 1) = ((2 · 𝑥) − 1))
106103, 105ifbieq2d 4527 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
107106adantr 480 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), 0, ((2 · 𝑦) − 1)) = if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))
10856, 57, 59, 56, 56, 102, 107cnmpt12 23603 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))) ∈ (II Cn II))
109 id 22 . . . . . . 7 (𝑥 = 0 → 𝑥 = 0)
110109, 69eqbrtrdi 5158 . . . . . 6 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
111110, 43syl 17 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 0)
112 c0ex 11227 . . . . 5 0 ∈ V
113111, 47, 112fvmpt 6985 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
1148, 113mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘0) = 0)
115 1elunit 13485 . . . 4 1 ∈ (0[,]1)
11668, 66ltnlei 11354 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11770, 116mpbi 230 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
118 breq1 5122 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
119117, 118mtbiri 327 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
120119, 36syl 17 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = ((2 · 𝑥) − 1))
121 oveq2 7411 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
122 2t1e2 12401 . . . . . . . . 9 (2 · 1) = 2
123121, 122eqtrdi 2786 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
124123oveq1d 7418 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
125 2m1e1 12364 . . . . . . 7 (2 − 1) = 1
126124, 125eqtrdi 2786 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
127120, 126eqtrd 2770 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)) = 1)
128 1ex 11229 . . . . 5 1 ∈ V
129127, 47, 128fvmpt 6985 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
130115, 129mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1)))‘1) = 1)
13134, 108, 114, 130reparpht 24947 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), 0, ((2 · 𝑥) − 1))))( ≃ph𝐽)𝐹)
13254, 131eqbrtrd 5141 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝𝐽)𝐹)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  ifcif 4500  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128   · cmul 11132   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  2c2 12293  (,)cioo 13360  [,]cicc 13363  t crest 17432  topGenctg 17449  Topctop 22829  TopOnctopon 22846   Cn ccn 23160  IIcii 24817  phcphtpc 24917  *𝑝cpco 24949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-cn 23163  df-cnp 23164  df-tx 23498  df-hmeo 23691  df-xms 24257  df-ms 24258  df-tms 24259  df-ii 24819  df-htpy 24918  df-phtpy 24919  df-phtpc 24940  df-pco 24954
This theorem is referenced by:  pcophtb  24978  pi1grplem  24998  pi1xfr  25004  pi1xfrcnvlem  25005
  Copyright terms: Public domain W3C validator