Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
2 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
3 | | mat2pmatbas.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
4 | 3 | matring 21500 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
5 | | mat2pmatbas.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
6 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝐴) = (1r‘𝐴) |
7 | 5, 6 | ringidcl 19722 |
. . . . . . 7
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
8 | 4, 7 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴)
∈ 𝐵) |
9 | 1, 2, 8 | 3jca 1126 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵)) |
10 | | mat2pmatbas.t |
. . . . . 6
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
11 | | mat2pmatbas.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | eqid 2738 |
. . . . . 6
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
13 | 10, 3, 5, 11, 12 | mat2pmatvalel 21782 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗))) |
14 | 9, 13 | sylan 579 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗))) |
15 | | fvif 6772 |
. . . . . 6
⊢
((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
17 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑃) = (1r‘𝑃) |
18 | 11, 12, 16, 17 | ply1scl1 21373 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
19 | 18 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
22 | 11, 12, 20, 21 | ply1scl0 21371 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
23 | 22 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
24 | 19, 23 | ifeq12d 4477 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
25 | 15, 24 | eqtrid 2790 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
26 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
27 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
28 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
29 | 28 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
30 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
32 | 3, 16, 20, 26, 27, 29, 31, 6 | mat1ov 21505 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐴)𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
33 | 32 | fveq2d 6760 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗)) = ((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
34 | | mat2pmatbas.c |
. . . . . 6
⊢ 𝐶 = (𝑁 Mat 𝑃) |
35 | 11 | ply1ring 21329 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
36 | 35 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑃 ∈ Ring) |
37 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝐶) = (1r‘𝐶) |
38 | 34, 17, 21, 26, 36, 29, 31, 37 | mat1ov 21505 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐶)𝑗) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
39 | 25, 33, 38 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗)) = (𝑖(1r‘𝐶)𝑗)) |
40 | 14, 39 | eqtrd 2778 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗)) |
41 | 40 | ralrimivva 3114 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗)) |
42 | | mat2pmatbas0.h |
. . . . 5
⊢ 𝐻 = (Base‘𝐶) |
43 | 10, 3, 5, 11, 34, 42 | mat2pmatbas0 21784 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵) → (𝑇‘(1r‘𝐴)) ∈ 𝐻) |
44 | 9, 43 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐴)) ∈ 𝐻) |
45 | 11, 34 | pmatring 21749 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
46 | 42, 37 | ringidcl 19722 |
. . . 4
⊢ (𝐶 ∈ Ring →
(1r‘𝐶)
∈ 𝐻) |
47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ 𝐻) |
48 | 34, 42 | eqmat 21481 |
. . 3
⊢ (((𝑇‘(1r‘𝐴)) ∈ 𝐻 ∧ (1r‘𝐶) ∈ 𝐻) → ((𝑇‘(1r‘𝐴)) = (1r‘𝐶) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗))) |
49 | 44, 47, 48 | syl2anc 583 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑇‘(1r‘𝐴)) = (1r‘𝐶) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗))) |
50 | 41, 49 | mpbird 256 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐴)) = (1r‘𝐶)) |