| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
| 2 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
| 3 | | mat2pmatbas.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 4 | 3 | matring 22449 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 5 | | mat2pmatbas.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
| 6 | | eqid 2737 |
. . . . . . . 8
⊢
(1r‘𝐴) = (1r‘𝐴) |
| 7 | 5, 6 | ringidcl 20262 |
. . . . . . 7
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
| 8 | 4, 7 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴)
∈ 𝐵) |
| 9 | 1, 2, 8 | 3jca 1129 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵)) |
| 10 | | mat2pmatbas.t |
. . . . . 6
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 11 | | mat2pmatbas.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
| 12 | | eqid 2737 |
. . . . . 6
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 13 | 10, 3, 5, 11, 12 | mat2pmatvalel 22731 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗))) |
| 14 | 9, 13 | sylan 580 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗))) |
| 15 | | fvif 6922 |
. . . . . 6
⊢
((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) |
| 16 | | eqid 2737 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 17 | | eqid 2737 |
. . . . . . . . 9
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 18 | 11, 12, 16, 17 | ply1scl1 22296 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 19 | 18 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 20 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 21 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 22 | 11, 12, 20, 21 | ply1scl0 22293 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 23 | 22 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 24 | 19, 23 | ifeq12d 4547 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝑗, ((algSc‘𝑃)‘(1r‘𝑅)), ((algSc‘𝑃)‘(0g‘𝑅))) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
| 25 | 15, 24 | eqtrid 2789 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
| 26 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 27 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 28 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 29 | 28 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 30 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 32 | 3, 16, 20, 26, 27, 29, 31, 6 | mat1ov 22454 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐴)𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 33 | 32 | fveq2d 6910 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗)) = ((algSc‘𝑃)‘if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
| 34 | | mat2pmatbas.c |
. . . . . 6
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 35 | 11 | ply1ring 22249 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 36 | 35 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑃 ∈ Ring) |
| 37 | | eqid 2737 |
. . . . . 6
⊢
(1r‘𝐶) = (1r‘𝐶) |
| 38 | 34, 17, 21, 26, 36, 29, 31, 37 | mat1ov 22454 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(1r‘𝐶)𝑗) = if(𝑖 = 𝑗, (1r‘𝑃), (0g‘𝑃))) |
| 39 | 25, 33, 38 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((algSc‘𝑃)‘(𝑖(1r‘𝐴)𝑗)) = (𝑖(1r‘𝐶)𝑗)) |
| 40 | 14, 39 | eqtrd 2777 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗)) |
| 41 | 40 | ralrimivva 3202 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗)) |
| 42 | | mat2pmatbas0.h |
. . . . 5
⊢ 𝐻 = (Base‘𝐶) |
| 43 | 10, 3, 5, 11, 34, 42 | mat2pmatbas0 22733 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧
(1r‘𝐴)
∈ 𝐵) → (𝑇‘(1r‘𝐴)) ∈ 𝐻) |
| 44 | 9, 43 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐴)) ∈ 𝐻) |
| 45 | 11, 34 | pmatring 22698 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
| 46 | 42, 37 | ringidcl 20262 |
. . . 4
⊢ (𝐶 ∈ Ring →
(1r‘𝐶)
∈ 𝐻) |
| 47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐶)
∈ 𝐻) |
| 48 | 34, 42 | eqmat 22430 |
. . 3
⊢ (((𝑇‘(1r‘𝐴)) ∈ 𝐻 ∧ (1r‘𝐶) ∈ 𝐻) → ((𝑇‘(1r‘𝐴)) = (1r‘𝐶) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗))) |
| 49 | 44, 47, 48 | syl2anc 584 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑇‘(1r‘𝐴)) = (1r‘𝐶) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(1r‘𝐴))𝑗) = (𝑖(1r‘𝐶)𝑗))) |
| 50 | 41, 49 | mpbird 257 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐴)) = (1r‘𝐶)) |