MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   GIF version

Theorem ruclem1 15921
Description: Lemma for ruc 15933 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
Assertion
Ref Expression
ruclem1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21oveqd 7285 . . . . 5 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀))
3 ruclem1.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 ruclem1.4 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4opelxpd 5626 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
6 ruclem1.5 . . . . . 6 (𝜑𝑀 ∈ ℝ)
7 simpr 484 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀)
87breq2d 5090 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦𝑚 < 𝑀))
9 simpl 482 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑥 = ⟨𝐴, 𝐵⟩)
109fveq2d 6772 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
1110opeq1d 4815 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨(1st𝑥), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩)
129fveq2d 6772 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
1312oveq2d 7284 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 + (2nd𝑥)) = (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)))
1413oveq1d 7283 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd𝑥)) / 2) = ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
1514, 12opeq12d 4817 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩ = ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
168, 11, 15ifbieq12d 4492 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1716csbeq2dv 3843 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1810, 12oveq12d 7286 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((1st𝑥) + (2nd𝑥)) = ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)))
1918oveq1d 7283 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
2019csbeq1d 3840 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
2117, 20eqtrd 2779 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
22 eqid 2739 . . . . . . 7 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
23 opex 5381 . . . . . . . . 9 ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ ∈ V
24 opex 5381 . . . . . . . . 9 ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ ∈ V
2523, 24ifex 4514 . . . . . . . 8 if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2625csbex 5238 . . . . . . 7 (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2721, 22, 26ovmpoa 7419 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ) ∧ 𝑀 ∈ ℝ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
285, 6, 27syl2anc 583 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
292, 28eqtrd 2779 . . . 4 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
30 op1stg 7829 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
313, 4, 30syl2anc 583 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
32 op2ndg 7830 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
333, 4, 32syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
3431, 33oveq12d 7286 . . . . . . 7 (𝜑 → ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐴 + 𝐵))
3534oveq1d 7283 . . . . . 6 (𝜑 → (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((𝐴 + 𝐵) / 2))
3635csbeq1d 3840 . . . . 5 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
37 ovex 7301 . . . . . . 7 ((𝐴 + 𝐵) / 2) ∈ V
38 breq1 5081 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀))
39 opeq2 4810 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩)
40 oveq1 7275 . . . . . . . . . 10 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)))
4140oveq1d 7283 . . . . . . . . 9 (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
4241opeq1d 4815 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4338, 39, 42ifbieq12d 4492 . . . . . . 7 (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
4437, 43csbie 3872 . . . . . 6 ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4531opeq1d 4815 . . . . . . 7 (𝜑 → ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩ = ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩)
4633oveq2d 7284 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + 𝐵))
4746oveq1d 7283 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
4847, 33opeq12d 4817 . . . . . . 7 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)
4945, 48ifeq12d 4485 . . . . . 6 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5044, 49eqtrid 2791 . . . . 5 (𝜑((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5136, 50eqtrd 2779 . . . 4 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5229, 51eqtrd 2779 . . 3 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
533, 4readdcld 10988 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5453rehalfcld 12203 . . . . 5 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
553, 54opelxpd 5626 . . . 4 (𝜑 → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
5654, 4readdcld 10988 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
5756rehalfcld 12203 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
5857, 4opelxpd 5626 . . . 4 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
5955, 58ifcld 4510 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) ∈ (ℝ × ℝ))
6052, 59eqeltrd 2840 . 2 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ))
61 ruclem1.6 . . 3 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
6252fveq2d 6772 . . . 4 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
63 fvif 6784 . . . . 5 (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
64 op1stg 7829 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
653, 37, 64sylancl 585 . . . . . 6 (𝜑 → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
66 ovex 7301 . . . . . . 7 ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V
67 op1stg 7829 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6866, 4, 67sylancr 586 . . . . . 6 (𝜑 → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6965, 68ifeq12d 4485 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7063, 69eqtrid 2791 . . . 4 (𝜑 → (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7162, 70eqtrd 2779 . . 3 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7261, 71eqtrid 2791 . 2 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
73 ruclem1.7 . . 3 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
7452fveq2d 6772 . . . 4 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
75 fvif 6784 . . . . 5 (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
76 op2ndg 7830 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
773, 37, 76sylancl 585 . . . . . 6 (𝜑 → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
78 op2ndg 7830 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
7966, 4, 78sylancr 586 . . . . . 6 (𝜑 → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8077, 79ifeq12d 4485 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8175, 80eqtrid 2791 . . . 4 (𝜑 → (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8274, 81eqtrd 2779 . . 3 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8373, 82eqtrid 2791 . 2 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8460, 72, 833jca 1126 1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  csb 3836  ifcif 4464  cop 4572   class class class wbr 5078   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  1st c1st 7815  2nd c2nd 7816  cr 10854   + caddc 10858   < clt 10993   / cdiv 11615  cn 11956  2c2 12011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019
This theorem is referenced by:  ruclem2  15922  ruclem3  15923  ruclem6  15925
  Copyright terms: Public domain W3C validator