MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   GIF version

Theorem ruclem1 16249
Description: Lemma for ruc 16261 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
Assertion
Ref Expression
ruclem1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21oveqd 7422 . . . . 5 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀))
3 ruclem1.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 ruclem1.4 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4opelxpd 5693 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
6 ruclem1.5 . . . . . 6 (𝜑𝑀 ∈ ℝ)
7 simpr 484 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀)
87breq2d 5131 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦𝑚 < 𝑀))
9 simpl 482 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑥 = ⟨𝐴, 𝐵⟩)
109fveq2d 6880 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
1110opeq1d 4855 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨(1st𝑥), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩)
129fveq2d 6880 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
1312oveq2d 7421 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 + (2nd𝑥)) = (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)))
1413oveq1d 7420 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd𝑥)) / 2) = ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
1514, 12opeq12d 4857 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩ = ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
168, 11, 15ifbieq12d 4529 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1716csbeq2dv 3881 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1810, 12oveq12d 7423 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((1st𝑥) + (2nd𝑥)) = ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)))
1918oveq1d 7420 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
2019csbeq1d 3878 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
2117, 20eqtrd 2770 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
22 eqid 2735 . . . . . . 7 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
23 opex 5439 . . . . . . . . 9 ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ ∈ V
24 opex 5439 . . . . . . . . 9 ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ ∈ V
2523, 24ifex 4551 . . . . . . . 8 if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2625csbex 5281 . . . . . . 7 (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2721, 22, 26ovmpoa 7562 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ) ∧ 𝑀 ∈ ℝ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
285, 6, 27syl2anc 584 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
292, 28eqtrd 2770 . . . 4 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
30 op1stg 8000 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
313, 4, 30syl2anc 584 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
32 op2ndg 8001 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
333, 4, 32syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
3431, 33oveq12d 7423 . . . . . . 7 (𝜑 → ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐴 + 𝐵))
3534oveq1d 7420 . . . . . 6 (𝜑 → (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((𝐴 + 𝐵) / 2))
3635csbeq1d 3878 . . . . 5 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
37 ovex 7438 . . . . . . 7 ((𝐴 + 𝐵) / 2) ∈ V
38 breq1 5122 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀))
39 opeq2 4850 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩)
40 oveq1 7412 . . . . . . . . . 10 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)))
4140oveq1d 7420 . . . . . . . . 9 (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
4241opeq1d 4855 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4338, 39, 42ifbieq12d 4529 . . . . . . 7 (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
4437, 43csbie 3909 . . . . . 6 ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4531opeq1d 4855 . . . . . . 7 (𝜑 → ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩ = ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩)
4633oveq2d 7421 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + 𝐵))
4746oveq1d 7420 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
4847, 33opeq12d 4857 . . . . . . 7 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)
4945, 48ifeq12d 4522 . . . . . 6 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5044, 49eqtrid 2782 . . . . 5 (𝜑((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5136, 50eqtrd 2770 . . . 4 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5229, 51eqtrd 2770 . . 3 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
533, 4readdcld 11264 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5453rehalfcld 12488 . . . . 5 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
553, 54opelxpd 5693 . . . 4 (𝜑 → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
5654, 4readdcld 11264 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
5756rehalfcld 12488 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
5857, 4opelxpd 5693 . . . 4 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
5955, 58ifcld 4547 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) ∈ (ℝ × ℝ))
6052, 59eqeltrd 2834 . 2 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ))
61 ruclem1.6 . . 3 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
6252fveq2d 6880 . . . 4 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
63 fvif 6892 . . . . 5 (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
64 op1stg 8000 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
653, 37, 64sylancl 586 . . . . . 6 (𝜑 → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
66 ovex 7438 . . . . . . 7 ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V
67 op1stg 8000 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6866, 4, 67sylancr 587 . . . . . 6 (𝜑 → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6965, 68ifeq12d 4522 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7063, 69eqtrid 2782 . . . 4 (𝜑 → (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7162, 70eqtrd 2770 . . 3 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7261, 71eqtrid 2782 . 2 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
73 ruclem1.7 . . 3 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
7452fveq2d 6880 . . . 4 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
75 fvif 6892 . . . . 5 (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
76 op2ndg 8001 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
773, 37, 76sylancl 586 . . . . . 6 (𝜑 → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
78 op2ndg 8001 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
7966, 4, 78sylancr 587 . . . . . 6 (𝜑 → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8077, 79ifeq12d 4522 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8175, 80eqtrid 2782 . . . 4 (𝜑 → (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8274, 81eqtrd 2770 . . 3 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8373, 82eqtrid 2782 . 2 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8460, 72, 833jca 1128 1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  ifcif 4500  cop 4607   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  cr 11128   + caddc 11132   < clt 11269   / cdiv 11894  cn 12240  2c2 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303
This theorem is referenced by:  ruclem2  16250  ruclem3  16251  ruclem6  16253
  Copyright terms: Public domain W3C validator