MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   GIF version

Theorem ruclem1 16279
Description: Lemma for ruc 16291 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
Assertion
Ref Expression
ruclem1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21oveqd 7465 . . . . 5 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀))
3 ruclem1.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 ruclem1.4 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4opelxpd 5739 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
6 ruclem1.5 . . . . . 6 (𝜑𝑀 ∈ ℝ)
7 simpr 484 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀)
87breq2d 5178 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦𝑚 < 𝑀))
9 simpl 482 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑥 = ⟨𝐴, 𝐵⟩)
109fveq2d 6924 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
1110opeq1d 4903 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨(1st𝑥), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩)
129fveq2d 6924 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
1312oveq2d 7464 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 + (2nd𝑥)) = (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)))
1413oveq1d 7463 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd𝑥)) / 2) = ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
1514, 12opeq12d 4905 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩ = ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
168, 11, 15ifbieq12d 4576 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1716csbeq2dv 3928 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1810, 12oveq12d 7466 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((1st𝑥) + (2nd𝑥)) = ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)))
1918oveq1d 7463 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
2019csbeq1d 3925 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
2117, 20eqtrd 2780 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
22 eqid 2740 . . . . . . 7 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
23 opex 5484 . . . . . . . . 9 ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ ∈ V
24 opex 5484 . . . . . . . . 9 ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ ∈ V
2523, 24ifex 4598 . . . . . . . 8 if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2625csbex 5329 . . . . . . 7 (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2721, 22, 26ovmpoa 7605 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ) ∧ 𝑀 ∈ ℝ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
285, 6, 27syl2anc 583 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
292, 28eqtrd 2780 . . . 4 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
30 op1stg 8042 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
313, 4, 30syl2anc 583 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
32 op2ndg 8043 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
333, 4, 32syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
3431, 33oveq12d 7466 . . . . . . 7 (𝜑 → ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐴 + 𝐵))
3534oveq1d 7463 . . . . . 6 (𝜑 → (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((𝐴 + 𝐵) / 2))
3635csbeq1d 3925 . . . . 5 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
37 ovex 7481 . . . . . . 7 ((𝐴 + 𝐵) / 2) ∈ V
38 breq1 5169 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀))
39 opeq2 4898 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩)
40 oveq1 7455 . . . . . . . . . 10 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)))
4140oveq1d 7463 . . . . . . . . 9 (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
4241opeq1d 4903 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4338, 39, 42ifbieq12d 4576 . . . . . . 7 (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
4437, 43csbie 3957 . . . . . 6 ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4531opeq1d 4903 . . . . . . 7 (𝜑 → ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩ = ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩)
4633oveq2d 7464 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + 𝐵))
4746oveq1d 7463 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
4847, 33opeq12d 4905 . . . . . . 7 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)
4945, 48ifeq12d 4569 . . . . . 6 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5044, 49eqtrid 2792 . . . . 5 (𝜑((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5136, 50eqtrd 2780 . . . 4 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5229, 51eqtrd 2780 . . 3 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
533, 4readdcld 11319 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5453rehalfcld 12540 . . . . 5 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
553, 54opelxpd 5739 . . . 4 (𝜑 → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
5654, 4readdcld 11319 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
5756rehalfcld 12540 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
5857, 4opelxpd 5739 . . . 4 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
5955, 58ifcld 4594 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) ∈ (ℝ × ℝ))
6052, 59eqeltrd 2844 . 2 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ))
61 ruclem1.6 . . 3 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
6252fveq2d 6924 . . . 4 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
63 fvif 6936 . . . . 5 (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
64 op1stg 8042 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
653, 37, 64sylancl 585 . . . . . 6 (𝜑 → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
66 ovex 7481 . . . . . . 7 ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V
67 op1stg 8042 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6866, 4, 67sylancr 586 . . . . . 6 (𝜑 → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
6965, 68ifeq12d 4569 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7063, 69eqtrid 2792 . . . 4 (𝜑 → (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7162, 70eqtrd 2780 . . 3 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7261, 71eqtrid 2792 . 2 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
73 ruclem1.7 . . 3 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
7452fveq2d 6924 . . . 4 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
75 fvif 6936 . . . . 5 (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
76 op2ndg 8043 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
773, 37, 76sylancl 585 . . . . . 6 (𝜑 → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
78 op2ndg 8043 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
7966, 4, 78sylancr 586 . . . . . 6 (𝜑 → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8077, 79ifeq12d 4569 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8175, 80eqtrid 2792 . . . 4 (𝜑 → (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8274, 81eqtrd 2780 . . 3 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8373, 82eqtrid 2792 . 2 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8460, 72, 833jca 1128 1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  ifcif 4548  cop 4654   class class class wbr 5166   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  cr 11183   + caddc 11187   < clt 11324   / cdiv 11947  cn 12293  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356
This theorem is referenced by:  ruclem2  16280  ruclem3  16281  ruclem6  16283
  Copyright terms: Public domain W3C validator