Proof of Theorem ruclem1
Step | Hyp | Ref
| Expression |
1 | | ruc.2 |
. . . . . 6
⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
2 | 1 | oveqd 7172 |
. . . . 5
⊢ (𝜑 → (〈𝐴, 𝐵〉𝐷𝑀) = (〈𝐴, 𝐵〉(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))𝑀)) |
3 | | ruclem1.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | | ruclem1.4 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 3, 4 | opelxpd 5565 |
. . . . . 6
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (ℝ ×
ℝ)) |
6 | | ruclem1.5 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀) |
8 | 7 | breq2d 5047 |
. . . . . . . . . 10
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦 ↔ 𝑚 < 𝑀)) |
9 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → 𝑥 = 〈𝐴, 𝐵〉) |
10 | 9 | fveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
11 | 10 | opeq1d 4772 |
. . . . . . . . . 10
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → 〈(1st ‘𝑥), 𝑚〉 = 〈(1st
‘〈𝐴, 𝐵〉), 𝑚〉) |
12 | 9 | fveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
13 | 12 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → (𝑚 + (2nd ‘𝑥)) = (𝑚 + (2nd ‘〈𝐴, 𝐵〉))) |
14 | 13 | oveq1d 7170 |
. . . . . . . . . . 11
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd ‘𝑥)) / 2) = ((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2)) |
15 | 14, 12 | opeq12d 4774 |
. . . . . . . . . 10
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉 = 〈((𝑚 + (2nd
‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) |
16 | 8, 11, 15 | ifbieq12d 4451 |
. . . . . . . . 9
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉) = if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
17 | 16 | csbeq2dv 3814 |
. . . . . . . 8
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → ⦋(((1st
‘𝑥) + (2nd
‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉) =
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
18 | 10, 12 | oveq12d 7173 |
. . . . . . . . . 10
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → ((1st ‘𝑥) + (2nd ‘𝑥)) = ((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉))) |
19 | 18 | oveq1d 7170 |
. . . . . . . . 9
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → (((1st ‘𝑥) + (2nd ‘𝑥)) / 2) = (((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) / 2)) |
20 | 19 | csbeq1d 3811 |
. . . . . . . 8
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → ⦋(((1st
‘𝑥) + (2nd
‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) =
⦋(((1st ‘〈𝐴, 𝐵〉) + (2nd ‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
21 | 17, 20 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ 𝑦 = 𝑀) → ⦋(((1st
‘𝑥) + (2nd
‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉) =
⦋(((1st ‘〈𝐴, 𝐵〉) + (2nd ‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
22 | | eqid 2758 |
. . . . . . 7
⊢ (𝑥 ∈ (ℝ ×
ℝ), 𝑦 ∈ ℝ
↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
23 | | opex 5327 |
. . . . . . . . 9
⊢
〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉 ∈ V |
24 | | opex 5327 |
. . . . . . . . 9
⊢
〈((𝑚 +
(2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉 ∈
V |
25 | 23, 24 | ifex 4473 |
. . . . . . . 8
⊢ if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) ∈
V |
26 | 25 | csbex 5184 |
. . . . . . 7
⊢
⦋(((1st ‘〈𝐴, 𝐵〉) + (2nd ‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) ∈
V |
27 | 21, 22, 26 | ovmpoa 7305 |
. . . . . 6
⊢
((〈𝐴, 𝐵〉 ∈ (ℝ ×
ℝ) ∧ 𝑀 ∈
ℝ) → (〈𝐴,
𝐵〉(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))𝑀) = ⦋(((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
28 | 5, 6, 27 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → (〈𝐴, 𝐵〉(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))𝑀) = ⦋(((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
29 | 2, 28 | eqtrd 2793 |
. . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉𝐷𝑀) = ⦋(((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
30 | | op1stg 7710 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
31 | 3, 4, 30 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
32 | | op2ndg 7711 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
33 | 3, 4, 32 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
34 | 31, 33 | oveq12d 7173 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) = (𝐴 + 𝐵)) |
35 | 34 | oveq1d 7170 |
. . . . . 6
⊢ (𝜑 → (((1st
‘〈𝐴, 𝐵〉) + (2nd
‘〈𝐴, 𝐵〉)) / 2) = ((𝐴 + 𝐵) / 2)) |
36 | 35 | csbeq1d 3811 |
. . . . 5
⊢ (𝜑 →
⦋(((1st ‘〈𝐴, 𝐵〉) + (2nd ‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) =
⦋((𝐴 + 𝐵) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
37 | | ovex 7188 |
. . . . . . 7
⊢ ((𝐴 + 𝐵) / 2) ∈ V |
38 | | breq1 5038 |
. . . . . . . 8
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀)) |
39 | | opeq2 4766 |
. . . . . . . 8
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → 〈(1st
‘〈𝐴, 𝐵〉), 𝑚〉 = 〈(1st
‘〈𝐴, 𝐵〉), ((𝐴 + 𝐵) / 2)〉) |
40 | | oveq1 7162 |
. . . . . . . . . 10
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘〈𝐴, 𝐵〉)) = (((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉))) |
41 | 40 | oveq1d 7170 |
. . . . . . . . 9
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2)) |
42 | 41 | opeq1d 4772 |
. . . . . . . 8
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉 = 〈((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) |
43 | 38, 39, 42 | ifbieq12d 4451 |
. . . . . . 7
⊢ (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉)) |
44 | 37, 43 | csbie 3842 |
. . . . . 6
⊢
⦋((𝐴 +
𝐵) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) |
45 | 31 | opeq1d 4772 |
. . . . . . 7
⊢ (𝜑 → 〈(1st
‘〈𝐴, 𝐵〉), ((𝐴 + 𝐵) / 2)〉 = 〈𝐴, ((𝐴 + 𝐵) / 2)〉) |
46 | 33 | oveq2d 7171 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) = (((𝐴 + 𝐵) / 2) + 𝐵)) |
47 | 46 | oveq1d 7170 |
. . . . . . . 8
⊢ (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) |
48 | 47, 33 | opeq12d 4774 |
. . . . . . 7
⊢ (𝜑 → 〈((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉 = 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) |
49 | 45, 48 | ifeq12d 4444 |
. . . . . 6
⊢ (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
50 | 44, 49 | syl5eq 2805 |
. . . . 5
⊢ (𝜑 → ⦋((𝐴 + 𝐵) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
51 | 36, 50 | eqtrd 2793 |
. . . 4
⊢ (𝜑 →
⦋(((1st ‘〈𝐴, 𝐵〉) + (2nd ‘〈𝐴, 𝐵〉)) / 2) / 𝑚⦌if(𝑚 < 𝑀, 〈(1st ‘〈𝐴, 𝐵〉), 𝑚〉, 〈((𝑚 + (2nd ‘〈𝐴, 𝐵〉)) / 2), (2nd
‘〈𝐴, 𝐵〉)〉) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
52 | 29, 51 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (〈𝐴, 𝐵〉𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
53 | 3, 4 | readdcld 10713 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
54 | 53 | rehalfcld 11926 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
55 | 3, 54 | opelxpd 5565 |
. . . 4
⊢ (𝜑 → 〈𝐴, ((𝐴 + 𝐵) / 2)〉 ∈ (ℝ ×
ℝ)) |
56 | 54, 4 | readdcld 10713 |
. . . . . 6
⊢ (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ) |
57 | 56 | rehalfcld 11926 |
. . . . 5
⊢ (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ) |
58 | 57, 4 | opelxpd 5565 |
. . . 4
⊢ (𝜑 → 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉 ∈ (ℝ ×
ℝ)) |
59 | 55, 58 | ifcld 4469 |
. . 3
⊢ (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) ∈ (ℝ ×
ℝ)) |
60 | 52, 59 | eqeltrd 2852 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐵〉𝐷𝑀) ∈ (ℝ ×
ℝ)) |
61 | | ruclem1.6 |
. . 3
⊢ 𝑋 = (1st
‘(〈𝐴, 𝐵〉𝐷𝑀)) |
62 | 52 | fveq2d 6666 |
. . . 4
⊢ (𝜑 → (1st
‘(〈𝐴, 𝐵〉𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉))) |
63 | | fvif 6678 |
. . . . 5
⊢
(1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘〈𝐴, ((𝐴 + 𝐵) / 2)〉), (1st
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
64 | | op1stg 7710 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st
‘〈𝐴, ((𝐴 + 𝐵) / 2)〉) = 𝐴) |
65 | 3, 37, 64 | sylancl 589 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈𝐴, ((𝐴 + 𝐵) / 2)〉) = 𝐴) |
66 | | ovex 7188 |
. . . . . . 7
⊢ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V |
67 | | op1stg 7710 |
. . . . . . 7
⊢
((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) |
68 | 66, 4, 67 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) |
69 | 65, 68 | ifeq12d 4444 |
. . . . 5
⊢ (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘〈𝐴, ((𝐴 + 𝐵) / 2)〉), (1st
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))) |
70 | 63, 69 | syl5eq 2805 |
. . . 4
⊢ (𝜑 → (1st
‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))) |
71 | 62, 70 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (1st
‘(〈𝐴, 𝐵〉𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))) |
72 | 61, 71 | syl5eq 2805 |
. 2
⊢ (𝜑 → 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))) |
73 | | ruclem1.7 |
. . 3
⊢ 𝑌 = (2nd
‘(〈𝐴, 𝐵〉𝐷𝑀)) |
74 | 52 | fveq2d 6666 |
. . . 4
⊢ (𝜑 → (2nd
‘(〈𝐴, 𝐵〉𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉))) |
75 | | fvif 6678 |
. . . . 5
⊢
(2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘〈𝐴, ((𝐴 + 𝐵) / 2)〉), (2nd
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) |
76 | | op2ndg 7711 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd
‘〈𝐴, ((𝐴 + 𝐵) / 2)〉) = ((𝐴 + 𝐵) / 2)) |
77 | 3, 37, 76 | sylancl 589 |
. . . . . 6
⊢ (𝜑 → (2nd
‘〈𝐴, ((𝐴 + 𝐵) / 2)〉) = ((𝐴 + 𝐵) / 2)) |
78 | | op2ndg 7711 |
. . . . . . 7
⊢
((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) = 𝐵) |
79 | 66, 4, 78 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → (2nd
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉) = 𝐵) |
80 | 77, 79 | ifeq12d 4444 |
. . . . 5
⊢ (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘〈𝐴, ((𝐴 + 𝐵) / 2)〉), (2nd
‘〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)) |
81 | 75, 80 | syl5eq 2805 |
. . . 4
⊢ (𝜑 → (2nd
‘if(((𝐴 + 𝐵) / 2) < 𝑀, 〈𝐴, ((𝐴 + 𝐵) / 2)〉, 〈((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵〉)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)) |
82 | 74, 81 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (2nd
‘(〈𝐴, 𝐵〉𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)) |
83 | 73, 82 | syl5eq 2805 |
. 2
⊢ (𝜑 → 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)) |
84 | 60, 72, 83 | 3jca 1125 |
1
⊢ (𝜑 → ((〈𝐴, 𝐵〉𝐷𝑀) ∈ (ℝ × ℝ) ∧
𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))) |