Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvpr1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvpr1 7104 as of 26-Sep-2024. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvpr1.1 | ⊢ 𝐴 ∈ V |
fvpr1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvpr1OLD | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4574 | . . . 4 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | fveq1i 6812 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
3 | necom 2995 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvunsn 7090 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
6 | 2, 5 | eqtrid 2789 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
7 | fvpr1.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | fvpr1.2 | . . 3 ⊢ 𝐶 ∈ V | |
9 | 7, 8 | fvsn 7092 | . 2 ⊢ ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶 |
10 | 6, 9 | eqtrdi 2793 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∪ cun 3895 {csn 4571 {cpr 4573 〈cop 4577 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-res 5619 df-iota 6417 df-fun 6467 df-fv 6473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |