| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr2 | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvpr2.1 | ⊢ 𝐵 ∈ V |
| fvpr2.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| fvpr2 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvpr2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvpr2.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | fvpr2g 7125 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {cpr 4575 〈cop 4579 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fprb 7128 fnprb 7142 m2detleiblem3 22544 m2detleiblem4 22545 axlowdimlem6 28925 umgr2v2evd2 29506 ex-fv 30423 bj-endcomp 37361 nnsum3primes4 47898 nnsum3primesgbe 47902 zlmodzxzldeplem3 48613 2arymaptfo 48765 prelrrx2b 48825 rrx2plordisom 48834 ehl2eudisval0 48836 itscnhlinecirc02p 48896 |
| Copyright terms: Public domain | W3C validator |