![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr2 | Structured version Visualization version GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
Ref | Expression |
---|---|
fvpr2.1 | ⊢ 𝐵 ∈ V |
fvpr2.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fvpr2 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvpr2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvpr2.2 | . 2 ⊢ 𝐷 ∈ V | |
3 | fvpr2g 7210 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | |
4 | 1, 2, 3 | mp3an12 1450 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 {cpr 4632 〈cop 4636 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-res 5700 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: fprb 7213 fnprb 7227 m2detleiblem3 22650 m2detleiblem4 22651 axlowdimlem6 28976 umgr2v2evd2 29559 ex-fv 30471 bj-endcomp 37299 nnsum3primes4 47712 nnsum3primesgbe 47716 zlmodzxzldeplem3 48347 2arymaptfo 48503 prelrrx2b 48563 rrx2plordisom 48572 ehl2eudisval0 48574 itscnhlinecirc02p 48634 |
Copyright terms: Public domain | W3C validator |