MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2 Structured version   Visualization version   GIF version

Theorem fvpr2 7211
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.)
Hypotheses
Ref Expression
fvpr2.1 𝐵 ∈ V
fvpr2.2 𝐷 ∈ V
Assertion
Ref Expression
fvpr2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2
StepHypRef Expression
1 fvpr2.1 . 2 𝐵 ∈ V
2 fvpr2.2 . 2 𝐷 ∈ V
3 fvpr2g 7207 . 2 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ 𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
41, 2, 3mp3an12 1448 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  {cpr 4635  cop 4639  cfv 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-iota 6508  df-fun 6558  df-fv 6564
This theorem is referenced by:  fprb  7213  fnprb  7227  m2detleiblem3  22625  m2detleiblem4  22626  axlowdimlem6  28884  umgr2v2evd2  29467  ex-fv  30379  bj-endcomp  37026  nnsum3primes4  47378  nnsum3primesgbe  47382  zlmodzxzldeplem3  47903  2arymaptfo  48060  prelrrx2b  48120  rrx2plordisom  48129  ehl2eudisval0  48131  itscnhlinecirc02p  48191
  Copyright terms: Public domain W3C validator