MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2 Structured version   Visualization version   GIF version

Theorem fvpr2 7170
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.)
Hypotheses
Ref Expression
fvpr2.1 𝐵 ∈ V
fvpr2.2 𝐷 ∈ V
Assertion
Ref Expression
fvpr2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2
StepHypRef Expression
1 fvpr2.1 . 2 𝐵 ∈ V
2 fvpr2.2 . 2 𝐷 ∈ V
3 fvpr2g 7168 . 2 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ 𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
41, 2, 3mp3an12 1453 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  {cpr 4594  cop 4598  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  fprb  7171  fnprb  7185  m2detleiblem3  22523  m2detleiblem4  22524  axlowdimlem6  28881  umgr2v2evd2  29462  ex-fv  30379  bj-endcomp  37312  nnsum3primes4  47793  nnsum3primesgbe  47797  zlmodzxzldeplem3  48495  2arymaptfo  48647  prelrrx2b  48707  rrx2plordisom  48716  ehl2eudisval0  48718  itscnhlinecirc02p  48778
  Copyright terms: Public domain W3C validator