| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1 | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvpr1.1 | ⊢ 𝐴 ∈ V |
| fvpr1.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvpr1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvpr1.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | fvpr1g 7126 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 {cpr 4579 〈cop 4583 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: fprb 7130 fvtp1 7131 fnprb 7144 m2detleiblem3 22514 m2detleiblem4 22515 axlowdimlem6 28892 umgr2v2evd2 29473 bj-endbase 37294 poimirlem22 37626 nnsum3primes4 47776 nnsum3primesgbe 47780 zlmodzxzldeplem3 48491 zlmodzxzldeplem4 48492 2arymaptfo 48643 prelrrx2b 48703 rrx2plordisom 48712 ehl2eudisval0 48714 line2 48741 itscnhlinecirc02p 48774 |
| Copyright terms: Public domain | W3C validator |