MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1 Structured version   Visualization version   GIF version

Theorem fvpr1 7122
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.)
Hypotheses
Ref Expression
fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion
Ref Expression
fvpr1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1
StepHypRef Expression
1 fvpr1.1 . 2 𝐴 ∈ V
2 fvpr1.2 . 2 𝐶 ∈ V
3 fvpr1g 7119 . 2 ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
41, 2, 3mp3an12 1450 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  {cpr 4576  cop 4580  cfv 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6432  df-fun 6482  df-fv 6488
This theorem is referenced by:  fvpr2OLD  7125  fprb  7126  fvtp1  7127  fnprb  7141  m2detleiblem3  21885  m2detleiblem4  21886  axlowdimlem6  27605  umgr2v2evd2  28184  bj-endbase  35643  poimirlem22  35955  nnsum3primes4  45658  nnsum3primesgbe  45662  zlmodzxzldeplem3  46261  zlmodzxzldeplem4  46262  2arymaptfo  46418  prelrrx2b  46478  rrx2plordisom  46487  ehl2eudisval0  46489  line2  46516  itscnhlinecirc02p  46549
  Copyright terms: Public domain W3C validator