![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr1 | Structured version Visualization version GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
Ref | Expression |
---|---|
fvpr1.1 | ⊢ 𝐴 ∈ V |
fvpr1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvpr1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvpr1.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | fvpr1g 7184 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴 ≠ 𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) | |
4 | 1, 2, 3 | mp3an12 1451 | 1 ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 {cpr 4629 ⟨cop 4633 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 |
This theorem is referenced by: fvpr2OLD 7190 fprb 7191 fvtp1 7192 fnprb 7206 m2detleiblem3 22122 m2detleiblem4 22123 axlowdimlem6 28194 umgr2v2evd2 28773 bj-endbase 36185 poimirlem22 36498 nnsum3primes4 46442 nnsum3primesgbe 46446 zlmodzxzldeplem3 47136 zlmodzxzldeplem4 47137 2arymaptfo 47293 prelrrx2b 47353 rrx2plordisom 47362 ehl2eudisval0 47364 line2 47391 itscnhlinecirc02p 47424 |
Copyright terms: Public domain | W3C validator |