MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1 Structured version   Visualization version   GIF version

Theorem fvpr1 7128
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.)
Hypotheses
Ref Expression
fvpr1.1 𝐴 ∈ V
fvpr1.2 𝐶 ∈ V
Assertion
Ref Expression
fvpr1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1
StepHypRef Expression
1 fvpr1.1 . 2 𝐴 ∈ V
2 fvpr1.2 . 2 𝐶 ∈ V
3 fvpr1g 7126 . 2 ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
41, 2, 3mp3an12 1453 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {cpr 4579  cop 4583  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490
This theorem is referenced by:  fprb  7130  fvtp1  7131  fnprb  7144  m2detleiblem3  22514  m2detleiblem4  22515  axlowdimlem6  28892  umgr2v2evd2  29473  bj-endbase  37294  poimirlem22  37626  nnsum3primes4  47776  nnsum3primesgbe  47780  zlmodzxzldeplem3  48491  zlmodzxzldeplem4  48492  2arymaptfo  48643  prelrrx2b  48703  rrx2plordisom  48712  ehl2eudisval0  48714  line2  48741  itscnhlinecirc02p  48774
  Copyright terms: Public domain W3C validator