| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1 | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvpr1.1 | ⊢ 𝐴 ∈ V |
| fvpr1.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvpr1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvpr1.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | fvpr1g 7167 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 {cpr 4594 〈cop 4598 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fprb 7171 fvtp1 7172 fnprb 7185 m2detleiblem3 22523 m2detleiblem4 22524 axlowdimlem6 28881 umgr2v2evd2 29462 bj-endbase 37311 poimirlem22 37643 nnsum3primes4 47793 nnsum3primesgbe 47797 zlmodzxzldeplem3 48495 zlmodzxzldeplem4 48496 2arymaptfo 48647 prelrrx2b 48707 rrx2plordisom 48716 ehl2eudisval0 48718 line2 48745 itscnhlinecirc02p 48778 |
| Copyright terms: Public domain | W3C validator |