![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr1 | Structured version Visualization version GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
Ref | Expression |
---|---|
fvpr1.1 | ⊢ 𝐴 ∈ V |
fvpr1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvpr1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvpr1.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | fvpr1g 7181 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴 ≠ 𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) | |
4 | 1, 2, 3 | mp3an12 1447 | 1 ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 {cpr 4623 ⟨cop 4627 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6486 df-fun 6536 df-fv 6542 |
This theorem is referenced by: fvpr2OLD 7187 fprb 7188 fvtp1 7189 fnprb 7202 m2detleiblem3 22475 m2detleiblem4 22476 axlowdimlem6 28698 umgr2v2evd2 29278 bj-endbase 36697 poimirlem22 37013 nnsum3primes4 47001 nnsum3primesgbe 47005 zlmodzxzldeplem3 47431 zlmodzxzldeplem4 47432 2arymaptfo 47588 prelrrx2b 47648 rrx2plordisom 47657 ehl2eudisval0 47659 line2 47686 itscnhlinecirc02p 47719 |
Copyright terms: Public domain | W3C validator |