![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr1 | Structured version Visualization version GIF version |
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
Ref | Expression |
---|---|
fvpr1.1 | ⊢ 𝐴 ∈ V |
fvpr1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvpr1 | ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvpr1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvpr1.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | fvpr1g 7224 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | |
4 | 1, 2, 3 | mp3an12 1451 | 1 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {cpr 4650 〈cop 4654 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvpr2OLD 7230 fprb 7231 fvtp1 7232 fnprb 7245 m2detleiblem3 22656 m2detleiblem4 22657 axlowdimlem6 28980 umgr2v2evd2 29563 bj-endbase 37282 poimirlem22 37602 nnsum3primes4 47662 nnsum3primesgbe 47666 zlmodzxzldeplem3 48231 zlmodzxzldeplem4 48232 2arymaptfo 48388 prelrrx2b 48448 rrx2plordisom 48457 ehl2eudisval0 48459 line2 48486 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |