Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsn.1 | ⊢ 𝐴 ∈ V |
fvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fvsng 6938 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-iota 6298 df-fun 6341 df-fv 6347 |
This theorem is referenced by: fvpr1 6948 elixpsn 8524 ac6sfi 8800 dcomex 9912 axdc3lem4 9918 0ram 16416 mdet0fv0 21299 chpmat0d 21539 imasdsf1olem 23080 axlowdimlem8 26847 axlowdimlem11 26850 subfacp1lem2a 32662 subfacp1lem5 32666 cvmliftlem4 32770 frrlem12 33400 finixpnum 35348 poimirlem3 35366 fdc 35489 grposnOLD 35626 1arymaptfo 45450 |
Copyright terms: Public domain | W3C validator |