| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsn.1 | ⊢ 𝐴 ∈ V |
| fvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fvsng 7154 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: frrlem12 8276 elixpsn 8910 ac6sfi 9231 dcomex 10400 axdc3lem4 10406 0ram 16991 mdet0fv0 22481 chpmat0d 22721 imasdsf1olem 24261 axlowdimlem8 28876 axlowdimlem11 28879 subfacp1lem2a 35167 subfacp1lem5 35171 cvmliftlem4 35275 finixpnum 37599 poimirlem3 37617 fdc 37739 grposnOLD 37876 1arymaptfo 48632 mndtcco 49574 |
| Copyright terms: Public domain | W3C validator |