| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsn.1 | ⊢ 𝐴 ∈ V |
| fvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fvsng 7114 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: frrlem12 8227 elixpsn 8861 ac6sfi 9168 dcomex 10338 axdc3lem4 10344 0ram 16932 mdet0fv0 22510 chpmat0d 22750 imasdsf1olem 24289 axlowdimlem8 28928 axlowdimlem11 28931 subfacp1lem2a 35222 subfacp1lem5 35226 cvmliftlem4 35330 finixpnum 37651 poimirlem3 37669 fdc 37791 grposnOLD 37928 1arymaptfo 48681 mndtcco 49623 |
| Copyright terms: Public domain | W3C validator |