Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsn.1 | ⊢ 𝐴 ∈ V |
fvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fvsng 7052 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: fvpr1OLD 7066 frrlem12 8113 elixpsn 8725 ac6sfi 9058 dcomex 10203 axdc3lem4 10209 0ram 16721 mdet0fv0 21743 chpmat0d 21983 imasdsf1olem 23526 axlowdimlem8 27317 axlowdimlem11 27320 subfacp1lem2a 33142 subfacp1lem5 33146 cvmliftlem4 33250 finixpnum 35762 poimirlem3 35780 fdc 35903 grposnOLD 36040 1arymaptfo 45989 mndtchom 46371 mndtcco 46372 |
Copyright terms: Public domain | W3C validator |