| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsn.1 | ⊢ 𝐴 ∈ V |
| fvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fvsng 7123 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 |
| This theorem is referenced by: frrlem12 8236 elixpsn 8871 ac6sfi 9179 dcomex 10349 axdc3lem4 10355 0ram 16939 mdet0fv0 22529 chpmat0d 22769 imasdsf1olem 24308 axlowdimlem8 28948 axlowdimlem11 28951 subfacp1lem2a 35296 subfacp1lem5 35300 cvmliftlem4 35404 finixpnum 37718 poimirlem3 37736 fdc 37858 grposnOLD 37995 1arymaptfo 48805 mndtcco 49746 |
| Copyright terms: Public domain | W3C validator |