MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsn Structured version   Visualization version   GIF version

Theorem fvsn 7115
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion
Ref Expression
fvsn ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . 2 𝐴 ∈ V
2 fvsn.2 . 2 𝐵 ∈ V
3 fvsng 7114 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
41, 2, 3mp2an 692 1 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cop 4582  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  frrlem12  8227  elixpsn  8861  ac6sfi  9168  dcomex  10338  axdc3lem4  10344  0ram  16932  mdet0fv0  22510  chpmat0d  22750  imasdsf1olem  24289  axlowdimlem8  28928  axlowdimlem11  28931  subfacp1lem2a  35222  subfacp1lem5  35226  cvmliftlem4  35330  finixpnum  37651  poimirlem3  37669  fdc  37791  grposnOLD  37928  1arymaptfo  48681  mndtcco  49623
  Copyright terms: Public domain W3C validator