| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsn.1 | ⊢ 𝐴 ∈ V |
| fvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fvsng 7120 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: frrlem12 8237 elixpsn 8871 ac6sfi 9189 dcomex 10360 axdc3lem4 10366 0ram 16950 mdet0fv0 22497 chpmat0d 22737 imasdsf1olem 24277 axlowdimlem8 28912 axlowdimlem11 28915 subfacp1lem2a 35155 subfacp1lem5 35159 cvmliftlem4 35263 finixpnum 37587 poimirlem3 37605 fdc 37727 grposnOLD 37864 1arymaptfo 48632 mndtcco 49574 |
| Copyright terms: Public domain | W3C validator |