MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsn Structured version   Visualization version   GIF version

Theorem fvsn 7179
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion
Ref Expression
fvsn ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . 2 𝐴 ∈ V
2 fvsn.2 . 2 𝐵 ∈ V
3 fvsng 7178 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
41, 2, 3mp2an 691 1 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  cop 4635  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  fvpr1OLD  7192  frrlem12  8282  elixpsn  8931  ac6sfi  9287  dcomex  10442  axdc3lem4  10448  0ram  16953  mdet0fv0  22096  chpmat0d  22336  imasdsf1olem  23879  axlowdimlem8  28207  axlowdimlem11  28210  subfacp1lem2a  34171  subfacp1lem5  34175  cvmliftlem4  34279  finixpnum  36473  poimirlem3  36491  fdc  36613  grposnOLD  36750  1arymaptfo  47329  mndtchom  47710  mndtcco  47711
  Copyright terms: Public domain W3C validator