MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsn Structured version   Visualization version   GIF version

Theorem fvsn 7158
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion
Ref Expression
fvsn ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . 2 𝐴 ∈ V
2 fvsn.2 . 2 𝐵 ∈ V
3 fvsng 7157 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
41, 2, 3mp2an 692 1 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  frrlem12  8279  elixpsn  8913  ac6sfi  9238  dcomex  10407  axdc3lem4  10413  0ram  16998  mdet0fv0  22488  chpmat0d  22728  imasdsf1olem  24268  axlowdimlem8  28883  axlowdimlem11  28886  subfacp1lem2a  35174  subfacp1lem5  35178  cvmliftlem4  35282  finixpnum  37606  poimirlem3  37624  fdc  37746  grposnOLD  37883  1arymaptfo  48636  mndtcco  49578
  Copyright terms: Public domain W3C validator