Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsn | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsn.1 | ⊢ 𝐴 ∈ V |
fvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fvsng 7034 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvpr1OLD 7048 frrlem12 8084 elixpsn 8683 ac6sfi 8988 dcomex 10134 axdc3lem4 10140 0ram 16649 mdet0fv0 21651 chpmat0d 21891 imasdsf1olem 23434 axlowdimlem8 27220 axlowdimlem11 27223 subfacp1lem2a 33042 subfacp1lem5 33046 cvmliftlem4 33150 finixpnum 35689 poimirlem3 35707 fdc 35830 grposnOLD 35967 1arymaptfo 45877 mndtchom 46257 mndtcco 46258 |
Copyright terms: Public domain | W3C validator |