MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2OLD Structured version   Visualization version   GIF version

Theorem fvpr2OLD 7194
Description: Obsolete version of fvpr2 7193 as of 26-Sep-2024. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
fvpr2.1 𝐵 ∈ V
fvpr2.2 𝐷 ∈ V
Assertion
Ref Expression
fvpr2OLD (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2OLD
StepHypRef Expression
1 prcom 4737 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
21fveq1i 6893 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵)
3 necom 2995 . . 3 (𝐴𝐵𝐵𝐴)
4 fvpr2.1 . . . 4 𝐵 ∈ V
5 fvpr2.2 . . . 4 𝐷 ∈ V
64, 5fvpr1 7191 . . 3 (𝐵𝐴 → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
73, 6sylbi 216 . 2 (𝐴𝐵 → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
82, 7eqtrid 2785 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  {cpr 4631  cop 4635  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator