MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprb Structured version   Visualization version   GIF version

Theorem fprb 7009
Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.)
Hypotheses
Ref Expression
fprb.1 𝐴 ∈ V
fprb.2 𝐵 ∈ V
Assertion
Ref Expression
fprb (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fprb
StepHypRef Expression
1 fprb.1 . . . . . . 7 𝐴 ∈ V
21prid1 4678 . . . . . 6 𝐴 ∈ {𝐴, 𝐵}
3 ffvelrn 6902 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ 𝑅)
42, 3mpan2 691 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐴) ∈ 𝑅)
54adantr 484 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐴) ∈ 𝑅)
6 fprb.2 . . . . . . 7 𝐵 ∈ V
76prid2 4679 . . . . . 6 𝐵 ∈ {𝐴, 𝐵}
8 ffvelrn 6902 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ 𝑅)
97, 8mpan2 691 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐵) ∈ 𝑅)
109adantr 484 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐵) ∈ 𝑅)
11 fvex 6730 . . . . . . . 8 (𝐹𝐴) ∈ V
121, 11fvpr1 7005 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
13 fvex 6730 . . . . . . . 8 (𝐹𝐵) ∈ V
146, 13fvpr2 7006 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
15 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
16 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴))
1715, 16eqeq12d 2753 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴)))
18 eqcom 2744 . . . . . . . . 9 ((𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
1917, 18bitrdi 290 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴)))
20 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
21 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵))
2220, 21eqeq12d 2753 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵)))
23 eqcom 2744 . . . . . . . . 9 ((𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
2422, 23bitrdi 290 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
251, 6, 19, 24ralpr 4616 . . . . . . 7 (∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴) ∧ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
2612, 14, 25sylanbrc 586 . . . . . 6 (𝐴𝐵 → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
2726adantl 485 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
28 ffn 6545 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶𝑅𝐹 Fn {𝐴, 𝐵})
291, 6, 11, 13fpr 6969 . . . . . . 7 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}:{𝐴, 𝐵}⟶{(𝐹𝐴), (𝐹𝐵)})
3029ffnd 6546 . . . . . 6 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵})
31 eqfnfv 6852 . . . . . 6 ((𝐹 Fn {𝐴, 𝐵} ∧ {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵}) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3228, 30, 31syl2an 599 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3327, 32mpbird 260 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
34 opeq2 4785 . . . . . . 7 (𝑥 = (𝐹𝐴) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, (𝐹𝐴)⟩)
3534preq1d 4655 . . . . . 6 (𝑥 = (𝐹𝐴) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩})
3635eqeq2d 2748 . . . . 5 (𝑥 = (𝐹𝐴) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩}))
37 opeq2 4785 . . . . . . 7 (𝑦 = (𝐹𝐵) → ⟨𝐵, 𝑦⟩ = ⟨𝐵, (𝐹𝐵)⟩)
3837preq2d 4656 . . . . . 6 (𝑦 = (𝐹𝐵) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
3938eqeq2d 2748 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
4036, 39rspc2ev 3549 . . . 4 (((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
415, 10, 33, 40syl3anc 1373 . . 3 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
4241expcom 417 . 2 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
43 vex 3412 . . . . . . 7 𝑥 ∈ V
44 vex 3412 . . . . . . 7 𝑦 ∈ V
451, 6, 43, 44fpr 6969 . . . . . 6 (𝐴𝐵 → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦})
46 prssi 4734 . . . . . 6 ((𝑥𝑅𝑦𝑅) → {𝑥, 𝑦} ⊆ 𝑅)
47 fss 6562 . . . . . 6 (({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
4845, 46, 47syl2an 599 . . . . 5 ((𝐴𝐵 ∧ (𝑥𝑅𝑦𝑅)) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
4948ex 416 . . . 4 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
50 feq1 6526 . . . . 5 (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
5150biimprcd 253 . . . 4 ({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅 → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5249, 51syl6 35 . . 3 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅)))
5352rexlimdvv 3212 . 2 (𝐴𝐵 → (∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5442, 53impbid 215 1 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  wss 3866  {cpr 4543  cop 4547   Fn wfn 6375  wf 6376  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388
This theorem is referenced by:  2arymaptf1  45672  prelrrx2b  45733
  Copyright terms: Public domain W3C validator