Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprb Structured version   Visualization version   GIF version

Theorem fprb 6933
 Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.)
Hypotheses
Ref Expression
fprb.1 𝐴 ∈ V
fprb.2 𝐵 ∈ V
Assertion
Ref Expression
fprb (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fprb
StepHypRef Expression
1 fprb.1 . . . . . . 7 𝐴 ∈ V
21prid1 4658 . . . . . 6 𝐴 ∈ {𝐴, 𝐵}
3 ffvelrn 6826 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ 𝑅)
42, 3mpan2 690 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐴) ∈ 𝑅)
54adantr 484 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐴) ∈ 𝑅)
6 fprb.2 . . . . . . 7 𝐵 ∈ V
76prid2 4659 . . . . . 6 𝐵 ∈ {𝐴, 𝐵}
8 ffvelrn 6826 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ 𝑅)
97, 8mpan2 690 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐵) ∈ 𝑅)
109adantr 484 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐵) ∈ 𝑅)
11 fvex 6658 . . . . . . . 8 (𝐹𝐴) ∈ V
121, 11fvpr1 6929 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
13 fvex 6658 . . . . . . . 8 (𝐹𝐵) ∈ V
146, 13fvpr2 6930 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
15 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
16 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴))
1715, 16eqeq12d 2814 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴)))
18 eqcom 2805 . . . . . . . . 9 ((𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
1917, 18syl6bb 290 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴)))
20 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
21 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵))
2220, 21eqeq12d 2814 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵)))
23 eqcom 2805 . . . . . . . . 9 ((𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
2422, 23syl6bb 290 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
251, 6, 19, 24ralpr 4596 . . . . . . 7 (∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴) ∧ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
2612, 14, 25sylanbrc 586 . . . . . 6 (𝐴𝐵 → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
2726adantl 485 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
28 ffn 6487 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶𝑅𝐹 Fn {𝐴, 𝐵})
291, 6, 11, 13fpr 6893 . . . . . . 7 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}:{𝐴, 𝐵}⟶{(𝐹𝐴), (𝐹𝐵)})
3029ffnd 6488 . . . . . 6 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵})
31 eqfnfv 6779 . . . . . 6 ((𝐹 Fn {𝐴, 𝐵} ∧ {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵}) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3228, 30, 31syl2an 598 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3327, 32mpbird 260 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
34 opeq2 4765 . . . . . . 7 (𝑥 = (𝐹𝐴) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, (𝐹𝐴)⟩)
3534preq1d 4635 . . . . . 6 (𝑥 = (𝐹𝐴) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩})
3635eqeq2d 2809 . . . . 5 (𝑥 = (𝐹𝐴) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩}))
37 opeq2 4765 . . . . . . 7 (𝑦 = (𝐹𝐵) → ⟨𝐵, 𝑦⟩ = ⟨𝐵, (𝐹𝐵)⟩)
3837preq2d 4636 . . . . . 6 (𝑦 = (𝐹𝐵) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
3938eqeq2d 2809 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
4036, 39rspc2ev 3583 . . . 4 (((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
415, 10, 33, 40syl3anc 1368 . . 3 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
4241expcom 417 . 2 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
43 vex 3444 . . . . . . 7 𝑥 ∈ V
44 vex 3444 . . . . . . 7 𝑦 ∈ V
451, 6, 43, 44fpr 6893 . . . . . 6 (𝐴𝐵 → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦})
46 prssi 4714 . . . . . 6 ((𝑥𝑅𝑦𝑅) → {𝑥, 𝑦} ⊆ 𝑅)
47 fss 6501 . . . . . 6 (({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
4845, 46, 47syl2an 598 . . . . 5 ((𝐴𝐵 ∧ (𝑥𝑅𝑦𝑅)) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
4948ex 416 . . . 4 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
50 feq1 6468 . . . . 5 (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
5150biimprcd 253 . . . 4 ({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅 → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5249, 51syl6 35 . . 3 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅)))
5352rexlimdvv 3252 . 2 (𝐴𝐵 → (∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5442, 53impbid 215 1 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  {cpr 4527  ⟨cop 4531   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332 This theorem is referenced by:  2arymaptf1  45081  prelrrx2b  45142
 Copyright terms: Public domain W3C validator