Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grurn | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10486 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝑈 ∈ Univ) | |
2 | gruurn 10485 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) | |
3 | grupw 10482 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ ∪ ran 𝐹 ∈ 𝑈) → 𝒫 ∪ ran 𝐹 ∈ 𝑈) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝒫 ∪ ran 𝐹 ∈ 𝑈) |
5 | pwuni 4875 | . . 3 ⊢ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹 | |
6 | 5 | a1i 11 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹) |
7 | gruss 10483 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 ∪ ran 𝐹 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹) → ran 𝐹 ∈ 𝑈) | |
8 | 1, 4, 6, 7 | syl3anc 1369 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 ⟶wf 6414 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-gru 10478 |
This theorem is referenced by: gruima 10489 gruf 10498 gruen 10499 |
Copyright terms: Public domain | W3C validator |