MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grurn Structured version   Visualization version   GIF version

Theorem grurn 10761
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10759 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grurn ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)

Proof of Theorem grurn
StepHypRef Expression
1 simp1 1136 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝑈 ∈ Univ)
2 gruurn 10758 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
3 grupw 10755 . . 3 ((𝑈 ∈ Univ ∧ ran 𝐹𝑈) → 𝒫 ran 𝐹𝑈)
41, 2, 3syl2anc 584 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → 𝒫 ran 𝐹𝑈)
5 pwuni 4912 . . 3 ran 𝐹 ⊆ 𝒫 ran 𝐹
65a1i 11 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹 ⊆ 𝒫 ran 𝐹)
7 gruss 10756 . 2 ((𝑈 ∈ Univ ∧ 𝒫 ran 𝐹𝑈 ∧ ran 𝐹 ⊆ 𝒫 ran 𝐹) → ran 𝐹𝑈)
81, 4, 6, 7syl3anc 1373 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wss 3917  𝒫 cpw 4566   cuni 4874  ran crn 5642  wf 6510  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-gru 10751
This theorem is referenced by:  gruima  10762  gruf  10771  gruen  10772
  Copyright terms: Public domain W3C validator