| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grurn | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10697 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| grurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝑈 ∈ Univ) | |
| 2 | gruurn 10696 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) | |
| 3 | grupw 10693 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ ∪ ran 𝐹 ∈ 𝑈) → 𝒫 ∪ ran 𝐹 ∈ 𝑈) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → 𝒫 ∪ ran 𝐹 ∈ 𝑈) |
| 5 | pwuni 4896 | . . 3 ⊢ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹 | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹) |
| 7 | gruss 10694 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 ∪ ran 𝐹 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝒫 ∪ ran 𝐹) → ran 𝐹 ∈ 𝑈) | |
| 8 | 1, 4, 6, 7 | syl3anc 1373 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ran 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ran crn 5620 ⟶wf 6482 Univcgru 10688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-gru 10689 |
| This theorem is referenced by: gruima 10700 gruf 10709 gruen 10710 |
| Copyright terms: Public domain | W3C validator |