MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruxp Structured version   Visualization version   GIF version

Theorem gruxp 10720
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruxp ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem gruxp
StepHypRef Expression
1 gruun 10719 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
2 grupw 10708 . . . 4 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → 𝒫 (𝐴𝐵) ∈ 𝑈)
3 grupw 10708 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
4 xpsspw 5756 . . . . . 6 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
5 gruss 10709 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)) → (𝐴 × 𝐵) ∈ 𝑈)
64, 5mp3an3 1452 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
73, 6syldan 591 . . . 4 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
82, 7syldan 591 . . 3 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
983ad2antl1 1186 . 2 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
101, 9mpdan 687 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  cun 3903  wss 3905  𝒫 cpw 4553   × cxp 5621  Univcgru 10703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-gru 10704
This theorem is referenced by:  grumap  10721
  Copyright terms: Public domain W3C validator