![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruxp | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruxp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruun 10875 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | |
2 | grupw 10864 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
3 | grupw 10864 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
4 | xpsspw 5833 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
5 | gruss 10865 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ 𝑈) | |
6 | 4, 5 | mp3an3 1450 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
7 | 3, 6 | syldan 590 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
8 | 2, 7 | syldan 590 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
9 | 8 | 3ad2antl1 1185 | . 2 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
10 | 1, 9 | mpdan 686 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-gru 10860 |
This theorem is referenced by: grumap 10877 |
Copyright terms: Public domain | W3C validator |