![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruxp | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruxp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruun 10788 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | |
2 | grupw 10777 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
3 | grupw 10777 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
4 | xpsspw 5804 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
5 | gruss 10778 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ 𝑈) | |
6 | 4, 5 | mp3an3 1451 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
7 | 3, 6 | syldan 592 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
8 | 2, 7 | syldan 592 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
9 | 8 | 3ad2antl1 1186 | . 2 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
10 | 1, 9 | mpdan 686 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ∪ cun 3944 ⊆ wss 3946 𝒫 cpw 4598 × cxp 5670 Univcgru 10772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-map 8810 df-gru 10773 |
This theorem is referenced by: grumap 10790 |
Copyright terms: Public domain | W3C validator |