| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruxp | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruxp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gruun 10719 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | |
| 2 | grupw 10708 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
| 3 | grupw 10708 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
| 4 | xpsspw 5756 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 5 | gruss 10709 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ 𝑈) | |
| 6 | 4, 5 | mp3an3 1452 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| 7 | 3, 6 | syldan 591 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| 8 | 2, 7 | syldan 591 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| 9 | 8 | 3ad2antl1 1186 | . 2 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| 10 | 1, 9 | mpdan 687 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 Univcgru 10703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-gru 10704 |
| This theorem is referenced by: grumap 10721 |
| Copyright terms: Public domain | W3C validator |