Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruxp | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruxp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruun 10280 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | |
2 | grupw 10269 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
3 | grupw 10269 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
4 | xpsspw 5657 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
5 | gruss 10270 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ 𝑈) | |
6 | 4, 5 | mp3an3 1448 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
7 | 3, 6 | syldan 594 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
8 | 2, 7 | syldan 594 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
9 | 8 | 3ad2antl1 1183 | . 2 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
10 | 1, 9 | mpdan 686 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2112 ∪ cun 3859 ⊆ wss 3861 𝒫 cpw 4498 × cxp 5527 Univcgru 10264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-map 8425 df-gru 10265 |
This theorem is referenced by: grumap 10282 |
Copyright terms: Public domain | W3C validator |