MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruxp Structured version   Visualization version   GIF version

Theorem gruxp 10826
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruxp ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem gruxp
StepHypRef Expression
1 gruun 10825 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
2 grupw 10814 . . . 4 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → 𝒫 (𝐴𝐵) ∈ 𝑈)
3 grupw 10814 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
4 xpsspw 5793 . . . . . 6 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
5 gruss 10815 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)) → (𝐴 × 𝐵) ∈ 𝑈)
64, 5mp3an3 1452 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
73, 6syldan 591 . . . 4 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
82, 7syldan 591 . . 3 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
983ad2antl1 1186 . 2 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
101, 9mpdan 687 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  cun 3929  wss 3931  𝒫 cpw 4580   × cxp 5657  Univcgru 10809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-gru 10810
This theorem is referenced by:  grumap  10827
  Copyright terms: Public domain W3C validator