MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruxp Structured version   Visualization version   GIF version

Theorem gruxp 10494
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruxp ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem gruxp
StepHypRef Expression
1 gruun 10493 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
2 grupw 10482 . . . 4 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → 𝒫 (𝐴𝐵) ∈ 𝑈)
3 grupw 10482 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
4 xpsspw 5708 . . . . . 6 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
5 gruss 10483 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)) → (𝐴 × 𝐵) ∈ 𝑈)
64, 5mp3an3 1448 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
73, 6syldan 590 . . . 4 ((𝑈 ∈ Univ ∧ 𝒫 (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
82, 7syldan 590 . . 3 ((𝑈 ∈ Univ ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
983ad2antl1 1183 . 2 (((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) ∧ (𝐴𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
101, 9mpdan 683 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2108  cun 3881  wss 3883  𝒫 cpw 4530   × cxp 5578  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-gru 10478
This theorem is referenced by:  grumap  10495
  Copyright terms: Public domain W3C validator