![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruxp | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruxp | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruun 9916 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) | |
2 | grupw 9905 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
3 | grupw 9905 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) | |
4 | xpsspw 5436 | . . . . . 6 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
5 | gruss 9906 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈 ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ 𝑈) | |
6 | 4, 5 | mp3an3 1575 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
7 | 3, 6 | syldan 586 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
8 | 2, 7 | syldan 586 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
9 | 8 | 3ad2antl1 1237 | . 2 ⊢ (((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ (𝐴 ∪ 𝐵) ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
10 | 1, 9 | mpdan 679 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 ∈ wcel 2157 ∪ cun 3767 ⊆ wss 3769 𝒫 cpw 4349 × cxp 5310 Univcgru 9900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-gru 9901 |
This theorem is referenced by: grumap 9918 |
Copyright terms: Public domain | W3C validator |