Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grumap | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grumap | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
2 | gruxp 10563 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝐵 × 𝐴) ∈ 𝑈) | |
3 | 2 | 3com23 1125 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐵 × 𝐴) ∈ 𝑈) |
4 | grupw 10551 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐵 × 𝐴) ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈) | |
5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈) |
6 | mapsspw 8666 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
7 | 6 | a1i 11 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) |
8 | gruss 10552 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐵 × 𝐴) ∈ 𝑈 ∧ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑m 𝐵) ∈ 𝑈) | |
9 | 1, 5, 7, 8 | syl3anc 1370 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 × cxp 5587 (class class class)co 7275 ↑m cmap 8615 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-pm 8618 df-gru 10547 |
This theorem is referenced by: gruixp 10565 |
Copyright terms: Public domain | W3C validator |