MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grumap Structured version   Visualization version   GIF version

Theorem grumap 9945
Description: A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grumap ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝑚 𝐵) ∈ 𝑈)

Proof of Theorem grumap
StepHypRef Expression
1 simp1 1172 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
2 gruxp 9944 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝐴𝑈) → (𝐵 × 𝐴) ∈ 𝑈)
323com23 1162 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐵 × 𝐴) ∈ 𝑈)
4 grupw 9932 . . 3 ((𝑈 ∈ Univ ∧ (𝐵 × 𝐴) ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈)
51, 3, 4syl2anc 581 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈)
6 mapsspw 8158 . . 3 (𝐴𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
76a1i 11 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴))
8 gruss 9933 . 2 ((𝑈 ∈ Univ ∧ 𝒫 (𝐵 × 𝐴) ∈ 𝑈 ∧ (𝐴𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴𝑚 𝐵) ∈ 𝑈)
91, 5, 7, 8syl3anc 1496 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝑚 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113  wcel 2166  wss 3798  𝒫 cpw 4378   × cxp 5340  (class class class)co 6905  𝑚 cmap 8122  Univcgru 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-map 8124  df-pm 8125  df-gru 9928
This theorem is referenced by:  gruixp  9946
  Copyright terms: Public domain W3C validator