MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grumap Structured version   Visualization version   GIF version

Theorem grumap 10694
Description: A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grumap ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴m 𝐵) ∈ 𝑈)

Proof of Theorem grumap
StepHypRef Expression
1 simp1 1136 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
2 gruxp 10693 . . . 4 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝐴𝑈) → (𝐵 × 𝐴) ∈ 𝑈)
323com23 1126 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐵 × 𝐴) ∈ 𝑈)
4 grupw 10681 . . 3 ((𝑈 ∈ Univ ∧ (𝐵 × 𝐴) ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈)
51, 3, 4syl2anc 584 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈)
6 mapsspw 8797 . . 3 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
76a1i 11 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴))
8 gruss 10682 . 2 ((𝑈 ∈ Univ ∧ 𝒫 (𝐵 × 𝐴) ∈ 𝑈 ∧ (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴m 𝐵) ∈ 𝑈)
91, 5, 7, 8syl3anc 1373 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴m 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wss 3897  𝒫 cpw 4545   × cxp 5609  (class class class)co 7341  m cmap 8745  Univcgru 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-pm 8748  df-gru 10677
This theorem is referenced by:  gruixp  10695
  Copyright terms: Public domain W3C validator