|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > grumap | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| grumap | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
| 2 | gruxp 10848 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝐵 × 𝐴) ∈ 𝑈) | |
| 3 | 2 | 3com23 1126 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐵 × 𝐴) ∈ 𝑈) | 
| 4 | grupw 10836 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ (𝐵 × 𝐴) ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈) | |
| 5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝒫 (𝐵 × 𝐴) ∈ 𝑈) | 
| 6 | mapsspw 8919 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
| 7 | 6 | a1i 11 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) | 
| 8 | gruss 10837 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 (𝐵 × 𝐴) ∈ 𝑈 ∧ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑m 𝐵) ∈ 𝑈) | |
| 9 | 1, 5, 7, 8 | syl3anc 1372 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ↑m 𝐵) ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 × cxp 5682 (class class class)co 7432 ↑m cmap 8867 Univcgru 10831 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-pm 8870 df-gru 10832 | 
| This theorem is referenced by: gruixp 10850 | 
| Copyright terms: Public domain | W3C validator |