HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstrlem2 Structured version   Visualization version   GIF version

Theorem hstrlem2 32195
Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
hstrlem2.1 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
Assertion
Ref Expression
hstrlem2 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem hstrlem2
StepHypRef Expression
1 fveq2 6865 . . 3 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6867 . 2 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
3 hstrlem2.1 . 2 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
4 fvex 6878 . 2 ((proj𝐶)‘𝑢) ∈ V
52, 3, 4fvmpt 6975 1 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5196  cfv 6519   C cch 30865  projcpjh 30873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527
This theorem is referenced by:  hstrlem3a  32196  hstrlem4  32198  hstrlem5  32199
  Copyright terms: Public domain W3C validator