HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstrlem2 Structured version   Visualization version   GIF version

Theorem hstrlem2 32279
Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
hstrlem2.1 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
Assertion
Ref Expression
hstrlem2 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem hstrlem2
StepHypRef Expression
1 fveq2 6905 . . 3 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6907 . 2 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
3 hstrlem2.1 . 2 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
4 fvex 6918 . 2 ((proj𝐶)‘𝑢) ∈ V
52, 3, 4fvmpt 7015 1 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cmpt 5224  cfv 6560   C cch 30949  projcpjh 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568
This theorem is referenced by:  hstrlem3a  32280  hstrlem4  32282  hstrlem5  32283
  Copyright terms: Public domain W3C validator