HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstrlem2 Structured version   Visualization version   GIF version

Theorem hstrlem2 30621
Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
hstrlem2.1 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
Assertion
Ref Expression
hstrlem2 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem hstrlem2
StepHypRef Expression
1 fveq2 6774 . . 3 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6776 . 2 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
3 hstrlem2.1 . 2 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
4 fvex 6787 . 2 ((proj𝐶)‘𝑢) ∈ V
52, 3, 4fvmpt 6875 1 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cmpt 5157  cfv 6433   C cch 29291  projcpjh 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  hstrlem3a  30622  hstrlem4  30624  hstrlem5  30625
  Copyright terms: Public domain W3C validator