HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstrlem2 Structured version   Visualization version   GIF version

Theorem hstrlem2 30522
Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
hstrlem2.1 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
Assertion
Ref Expression
hstrlem2 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑢
Allowed substitution hints:   𝐶(𝑢)   𝑆(𝑥,𝑢)

Proof of Theorem hstrlem2
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑥 = 𝐶 → (proj𝑥) = (proj𝐶))
21fveq1d 6758 . 2 (𝑥 = 𝐶 → ((proj𝑥)‘𝑢) = ((proj𝐶)‘𝑢))
3 hstrlem2.1 . 2 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
4 fvex 6769 . 2 ((proj𝐶)‘𝑢) ∈ V
52, 3, 4fvmpt 6857 1 (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418   C cch 29192  projcpjh 29200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  hstrlem3a  30523  hstrlem4  30525  hstrlem5  30526
  Copyright terms: Public domain W3C validator